Соединения азота. Свойства азота

АЗОТ
N (nitrogenium) ,
химический элемент (ат. номер 7) VA подгруппы периодической системы элементов. Атмосфера Земли содержит 78% (об.) азота. Чтобы показать, как велики эти запасы азота, отметим, что в атмосфере над каждым квадратным километром земной поверхности находится столько азота, что из него можно получить до 50 млн. т нитрата натрия или 10 млн. т аммиака (соединение азота с водородом) и все же это составляет малую долю азота, содержащегося в земной коре. Существование свободного азота свидетельствует о его инертности и трудности взаимодействия с другими элементами при обычной температуре. Связанный азот входит в состав как органической, так и неорганической материи. Растительный и животный мир содержит азот, связанный с углеродом и кислородом в белках. Помимо этого известны и могут быть получены в больших количествах азотсодержащие неорганические соединения, такие, как нитраты (NO3-), нитриты (NO2-), цианиды (CN-), нитриды (N3-) и азиды (N3-).
Историческая справка. Опыты А. Лавуазье, посвященные исследованию роли атмосферы в поддержании жизни и процессов горения, подтвердили существование относительно инертного вещества в атмосфере. Не установив элементную природу остающегося после сгорания газа, Лавуазье назвал его azote, что на древнегреческом означает "безжизненный". В 1772 Д.Резерфорд из Эдинбурга установил, что этот газ является элементом, и назвал его "вредный воздух". Латинское название азота происходит от греческих слов nitron и gen, что означает "образующий селитру".
Фиксация азота и азотный цикл. Термин "фиксация азота" означает процесс связывания атмосферного азота N2. В природе это может происходить двумя путями: либо бобовые растения, например горох, клевер и соя, накапливают на своих корнях клубеньки, в которых бактерии, фиксирующие азот, превращают его в нитраты, либо происходит окисление атмосферного азота кислородом в условиях разряда молнии. С.Аррениус установил, что таким способом фиксируется до 400 млн. т азота ежегодно. В атмосфере оксиды азота соединяются с дождевой водой, образуя азотную и азотистую кислоты. Кроме того, установлено, что с дождем и снегом на каждый гектар земли попадает ок. 6700 г азота; достигая почвы, они превращаются в нитриты и нитраты. Растения используют нитраты для образования растительных белковых веществ. Животные, питаясь этими растениями, усваивают белковые вещества растений и превращают их в животные белки. После смерти животных и растений происходит их разложение, азотные соединения превращаются в аммиак. Аммиак используется двумя путями: бактерии, не образующие нитратов, разрушают его до элементов, выделяя азот и водород, а другие бактерии образуют из него нитриты, которые другими бактериями окисляются до нитратов. Таким образом происходит круговорот азота в природе, или азотный цикл.

Строение ядра и электронных оболочек. В природе существуют два стабильных изотопа азота: с массовым числом 14 (N содержит 7 протонов и 7 нейтронов) и с массовым числом 15 (содержит 7 протонов и 8 нейтронов). Их соотношение составляет 99,635:0,365, поэтому атомная масса азота равна 14,008. Нестабильные изотопы азота 12N, 13N, 16N, 17N получены искусственно. Схематически электронное строение атома азота таково: 1s22s22px12py12pz1. Следовательно, на внешней (второй) электронной оболочке находится 5 электронов, которые могут участвовать в образовании химических связей; орбитали азота могут также принимать электроны, т.е. возможно образование соединений со степенью окисления от (-III) до (V), и они известны.
См. также АТОМА СТРОЕНИЕ .
Молекулярный азот. Из определений плотности газа установлено, что молекула азота двухатомна, т.е. молекулярная формула азота имеет вид NєN (или N2). У двух атомов азота три внешних 2p-электрона каждого атома образуют тройную связь:N:::N:, формируя электронные пары. Измеренное межатомное расстояние N-N равно 1,095 . Как и в случае с водородом (см. ВОДОРОД), существуют молекулы азота с различным спином ядра - симметричные и антисимметричные. При обычной температуре соотношение симметричной и антисимметричной форм равно 2:1. В твердом состоянии известны две модификации азота: a - кубическая и b - гексагональная с температурой перехода a (r) b -237,39° С. Модификация b плавится при -209,96° С и кипит при -195,78° C при 1 атм (см. табл. 1). Энергия диссоциации моля (28,016 г или 6,023*10 23 молекул) молекулярного азота на атомы (N2 2N) равна примерно -225 ккал. Поэтому атомарный азот может образовываться при тихом электрическом разряде и химически более активен, чем молекулярный азот.
Получение и применение. Способ получения элементного азота зависит от требуемой его чистоты. В огромных количествах азот получают для синтеза аммиака, при этом допустимы небольшие примеси благородных газов.
Азот из атмосферы. Экономически выделение азота из атмосферы обусловлено дешевизной метода сжижения очищенного воздуха (пары воды, CO2, пыль, другие примеси удалены). Последовательные циклы сжатия, охлаждения и расширения такого воздуха приводят к его сжижению. Жидкий воздух подвергают фракционной перегонке при медленном подъеме температуры. Первыми выделяются благородные газы, затем азот, и остается жидкий кислород. Очистка достигается многократностью процессов фракционирования. Таким методом производят многие миллионы тонн азота ежегодно, преимущественно для синтеза аммиака, который является исходным сырьем в технологии производства различных азотсодержащих соединений для промышленности и сельского хозяйства. Кроме того, очищенную азотную атмосферу часто используют, когда недопустимо присутствие кислорода.
Лабораторные способы. Азот в небольших количествах можно получать в лаборатории разными способами, окисляя аммиак или ион аммония, например:


Очень удобен процесс окисления иона аммония нитрит-ионом:

Известны и другие способы - разложение азидов при нагревании, разложение аммиака оксидом меди(II), взаимодействие нитритов с сульфаминовой кислотой или мочевиной:


При каталитическом разложении аммиака при высокой температуре тоже можно получить азот:

Физические свойства. Некоторые физические свойства азота приведены в табл. 1.
Таблица 1. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АЗОТА
Плотность, г/см3 0,808 (жидк.) Температура плавления, ° С -209,96 Температура кипения, ° С -195,8 Критическая температура, ° С -147,1 Критическое давление, атма 33,5 Критическая плотность, г/см3 а 0,311 Удельная теплоемкость, Дж/(мольЧК) 14,56 (15° С) Электроотрицательность по Полингу 3 Ковалентный радиус, 0,74 Кристаллический радиус, 1,4 (M3-) Потенциал ионизации, Вб

первый 14,54 второй 29,60


а Температура и давление, при которых плотности азота жидкого и газообразного состояния одинаковы.
б Количество энергии, необходимое для удаления первого внешнего и следующего за ним электронов, в расчете на 1 моль атомарного азота.


Химические свойства. Как уже было отмечено, преобладающим свойством азота при обычных условиях температуры и давления является его инертность, или малая химическая активность. Электронная структура азота содержит электронную пару на 2s-уровне и три наполовину заполненные 2р-орбитали, поэтому один атом азота может связывать не более четырех других атомов, т.е. его координационное число равно четырем. Небольшой размер атома также ограничивает количество атомов или групп атомов, которые могут быть связаны с ним. Поэтому многие соединения других членов подгруппы VA либо вовсе не имеют аналогов среди соединений азота, либо аналогичные соединения азота оказываются нестабильными. Так, PCl5 - стабильное соединение, а NCl5 не существует. Атом азота способен связываться с другим атомом азота, образуя несколько достаточно стабильных соединений, такие, как гидразин N2H4 и азиды металлов MN3. Такой тип связи необычен для химических элементов (за исключением углерода и кремния). При повышенных температурах азот реагирует со многими металлами, образуя частично ионные нитриды MxNy. В этих соединениях азот заряжен отрицательно. В табл. 2 приведены степени окисления и примеры соответствующих соединений.
Таблица 2. СТЕПЕНИ ОКИСЛЕНИЯ АЗОТА И СООТВЕТСТВУЮЩИЕ СОЕДИНЕНИЯ
Степень окисления Примеры соединений
-III Аммиак NH3, ион аммония NH4+, нитриды M3N2 -II Гидразин N2H4 -I Гидроксиламин NH2OH I Гипонитрит натрия Na2N2O2, оксид азота(I) N2O II Оксид азота(II) NO III Оксид азота(III) N2O3, нитрит натрия NaNO2 IV Оксид азота(IV) NO2, димер N2O4 V Оксид азота(V) N2O5, азотная кислота HNO3 и ее соли (нитраты) Нитриды. Соединения азота с более электроположительными элементами, металлами и неметаллами - нитриды, - похожи на карбиды и гидриды. Их можно разделить в зависимости от характера связи M-N на ионные, ковалентные и с промежуточным типом связи. Как правило, это кристаллические вещества.
Ионные нитриды. Связь в этих соединениях предполагает переход электронов от металла к азоту с образованием иона N3-. К таким нитридам относятся Li3N, Mg3N2, Zn3N2 и Cu3N2. Кроме лития, другие щелочные металлы IA подгруппы нитридов не образуют. Ионные нитриды имеют высокие температуры плавления, реагируют с водой, образуя NH3 и гидроксиды металлов.
Ковалентные нитриды. Когда электроны азота участвуют в образовании связи совместно с электронами другого элемента без перехода их от азота к другому атому, образуются нитриды с ковалентной связью. Нитриды водорода (например, аммиак и гидразин) полностью ковалентны, как и галогениды азота (NF3 и NCl3). К ковалентным нитридам относятся, например, Si3N4, P3N5 и BN - высокостабильные белые вещества, причем BN имеет две аллотропные модификации: гексагональную и алмазоподобную. Последняя образуется при высоких давлениях и температурах и имеет твердость, близкую к твердости алмаза.
Нитриды с промежуточным типом связи. Переходные элементы в реакции с NH3 при высокой температуре образуют необычный класс соединений, в которых атомы азота распределены между регулярно расположенными атомами металла. В этих соединениях нет четкого смещения электронов. Примеры таких нитридов - Fe4N, W2N, Mo2N, Mn3N2. Эти соединения, как правило, совершенно инертны и обладают хорошей электрической проводимостью.
Водородные соединения азота. Азот и водород взаимодействуют, образуя соединения, отдаленно напоминающие углеводороды (см. также ОРГАНИЧЕСКАЯ ХИМИЯ). Стабильность азотоводородов уменьшается с увеличением числа атомов азота в цепи в отличие от углеводородов, которые устойчивы и в длинных цепях. Наиболее важные нитриды водорода - аммиак NH3 и гидразин N2H4. К ним относится также азотистоводородная кислота HNNN (HN3).
Аммиак NH3. Аммиак - один из наиболее важных промышленных продуктов современной экономики. В конце 20 в. США производили ок. 13 млн. т аммиака ежегодно (в пересчете на безводный аммиак).
Строение молекулы. Молекула NH3 имеет почти пирамидальное строение. Угол связи H-N-H составляет 107°, что близко к величине тетраэдрического угла 109°. Неподеленная электронная пара эквивалентна присоединенной группе, в результате координационное число азота равно 4 и азот располагается в центре тетраэдра.


Cвойства аммиака. Некоторые физические свойств аммиака в сравнении с водой приведены в табл. 3.

Таблица 3. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АММИАКА И ВОДЫ


Температуры кипения и плавления у аммиака намного ниже, чем у воды, несмотря на близость молекулярных масс и сходство строения молекул. Это объясняется относительно большей прочностью межмолекулярных связей у воды, чем у аммиака (такая межмолекулярная связь называется водородной).
Аммиак как растворитель. Высокая диэлектрическая проницаемость и дипольный момент жидкого аммиака позволяют использовать его как растворитель для полярных или ионных неорганических веществ. Аммиак-растворитель занимает промежуточное положение между водой и органическими растворителями типа этилового спирта. Щелочные и щелочноземельные металлы растворяются в аммиаке, образуя темносиние растворы. Можно полагать, что в растворе происходит сольватация и ионизация валентных электронов по схеме

Синий цвет связывают с сольватацией и движением электронов или с подвижностью "дырок" в жидкости. При высокой концентрации натрия в жидком аммиаке раствор принимает бронзовую окраску и отличается высокой электропроводностью. Несвязанный щелочной металл можно выделить из такого раствора испарением аммиака или добавлением хлорида натрия. Растворы металлов в аммиаке являются хорошими восстановителями. В жидком аммиаке происходит автоионизация


аналогично процессу, протекающему в воде


Некоторые химические свойства обеих систем сопоставлены в табл. 4. Жидкий аммиак как растворитель имеет преимущество в некоторых случаях, когда невозможно проводить реакции в воде из-за быстрого взаимодействия компонентов с водой (например, окисление и восстановление). Например, в жидком аммиаке кальций реагирует с KCl с образованием CaCl2 и K, поскольку CaCl2 нерастворим в жидком аммиаке, а К растворим, и реакция протекает полностью. В воде такая реакция невозможна из-за быстрого взаимодействия Ca с водой. Получение аммиака. Газообразный NH3 выделяется из солей аммония при действии сильного основания, например, NaOH:

Метод применим в лабораторных условиях. Небольшие производства аммиака основаны также на гидролизе нитридов, например Mg3N2, водой. Цианамид кальция CaCN2 при взаимодействии с водой также образует аммиак. Основным промышленным методом получения аммиака является каталитический синтез его из атмосферного азота и водорода при высоких температуре и давлении:


Водород для этого синтеза получают термическим крекингом углеводородов, действием паров воды на уголь или железо, разложением спиртов парами воды или электролизом воды. На синтез аммиака получено множество патентов, отличающихся условиями проведения процесса (температура, давление, катализатор). Существует способ промышленного получения при термической перегонке угля. С технологической разработкой синтеза аммиака связаны имена Ф.Габера и К.Боша.
Химические свойства аммиака. Кроме реакций, упомянутых в табл. 4, аммиак реагирует с водой, образуя соединение NH3ЧH2O, которое часто ошибочно считают гидроксидом аммония NH4OH; в действительности существование NH4OH в растворе не доказано. Водный раствор аммиака ("нашатырный спирт") состоит преимущественно из NH3, H2O и малых концентраций ионов NH4+ и OH-, образующихся при диссоциации

Основной характер аммиака объясняется наличием неподеленной электронной пары азота:NH3. Поэтому NH3 - это основание Льюиса, которое имеет высшую нуклеофильную активность, проявляемую в форме ассоциации с протоном, или ядром атома водорода:

Любые ион или молекула, способные принимать электронную пару (электрофильное соединение), будут взаимодействовать с NH3 с образованием координационного соединения. Например:


Символ Mn+ представляет ион переходного металла (B-подгруппы периодической таблицы, например, Cu2+, Mn2+ и др.). Любая протонная (т.е. Н-содержащая) кислота реагирует с аммиаком в водном растворе с образованием солей аммония, таких, как нитрат аммония NH4NO3, хлорид аммония NH4Cl, сульфат аммония (NH4)2SO4, фосфат аммония (NH4)3PO4. Эти соли широко применяются в сельском хозяйстве как удобрения для введения азота в почву. Нитрат аммония кроме того применяют как недорогое взрывчатое вещество; впервые оно было применено с нефтяным топливом (дизельным маслом). Водный раствор аммиака применяют непосредственно для введения в почву или с орошающей водой. Мочевина NH2CONH2, получаемая синтезом из аммиака и углекислого газа, также является удобрением. Газообразный аммиак реагирует с металлами типа Na и K с образованием амидов:

Аммиак реагирует с гидридами и нитридами также с образованием амидов:


Амиды щелочных металлов (например, NaNH2) реагируют с N2O при нагревании, образуя азиды:

Газообразный NH3 восстанавливает оксиды тяжелых металлов до металлов при высокой температуре, по-видимому, благодаря водороду, образующемуся в результате разложения аммиака на N2 и H2:

Атомы водорода в молекуле NH3 могут замещаться на галоген. Иод реагирует с концентрированным раствором NH3, образуя смесь веществ, содержащую NI3. Это вещество очень неустойчиво и взрывается при малейшем механическом воздействии. При реакции NH3 c Cl2 образуются хлорамины NCl3, NHCl2 и NH2Cl. При воздействии на аммиак гипохлорита натрия NaOCl (образуется из NaOH и Cl2) конечным продуктом является гидразин:


Гидразин. Приведенные выше реакции представляют собой способ получения моногидрата гидразина состава N2H4ЧH2O. Безводный гидразин образуется при специальной перегонке моногидрата с BaO или другими водоотнимающими веществами. По свойствам гидразин слегка напоминает пероксид водорода H2O2. Чистый безводный гидразин - бесцветная гигроскопичная жидкость, кипящая при 113,5° C; хорошо растворяется в воде, образуя слабое основание

В кислой среде (H+) гидразин образует растворимые соли гидразония типа []+X-. Легкость, с которой гидразин и некоторые его производные (например, метилгидразин) реагируют с кислородом, позволяет использовать его в качестве компонента жидкого ракетного топлива. Гидразин и все его производные сильно ядовиты. Оксиды азота. В соединениях с кислородом азот проявляет все степени окисления, образуя оксиды: N2O, NO, N2O3, NO2 (N2O4), N2O5. Имеется скудная информация об образовании пероксидов азота (NO3, NO4). Оксид азота(I) N2O (монооксид диазота) получается при термической диссоциации нитрата аммония:

Молекула имеет линейное строение

N2O довольно инертен при комнатной температуре, но при высоких температурах может поддерживать горение легко окисляющихся материалов. N2O, известный как "веселящий газ", используют для умеренной анестезии в медицине. Оксид азота(II) NO - бесцветный газ, является одним из продуктов каталитической термической диссоциации аммиака в присутствии кислорода:


NO образуется также при термическом разложении азотной кислоты или при реакции меди с разбавленной азотной кислотой:

NO можно получать синтезом из простых веществ (N2 и O2) при очень высоких температурах, например, в электрическом разряде. В структуре молекулы NO имеется один неспаренный электрон. Соединения с такой структурой взаимодействуют с электрическим и магнитным полями. В жидком или твердом состоянии оксид имеет голубую окраску, поскольку неспаренный электрон вызывает частичную ассоциацию в жидком состоянии и слабую димеризацию в твердом состоянии: 2NO N2O2. Оксид азота(III) N2O3 (триоксид азота) - ангидрид азотистой кислоты: N2O3 + H2O 2HNO2. Чистый N2O3 может быть получен в виде голубой жидкости при низких температурах (-20° С) из эквимолекулярной смеси NO и NO2. N2O3 устойчив только в твердом состоянии при низких температурах (т.пл. -102,3° С), в жидком и газообразном состояния он снова разлагается на NO и NO2. Оксид азота(IV) NO2 (диоксид азота) также имеет в молекуле неспаренный электрон (см. выше оксид азота(II)). В строении молекулы предполагается трехэлектронная связь, и молекула проявляет свойства свободного радикала (одна линия соответствует двум спаренным электронам):


NO2 получается каталитическим окислением аммиака в избытке кислорода или окислением NO на воздухе:


а также по реакциям:


При комнатной температуре NO2 - газ темнокоричневого цвета, обладает магнитными свойствами благодаря наличию неспаренного электрона. При температурах ниже 0° C молекула NO2 димеризуется в тетраоксид диазота, причем при -9,3° C димеризация протекает полностью: 2NO2 N2O4. В жидком состоянии недимеризовано только 1% NO2, а при 100° C остается в виде димера 10% N2O4. NO2 (или N2O4) реагирует в теплой воде с образованием азотной кислоты: 3NO2 + H2O = 2HNO3 + NO. Технология NO2 поэтому очень существенна как промежуточная стадия получения промышленно важного продукта - азотной кислоты. Оксид азота(V) N2O5 (устар. ангидрид азотной кислоты) - белое кристаллическое вещество, получается обезвоживанием азотной кислоты в присутствии оксида фосфора P4O10:


N2O5 легко растворяется во влаге воздуха, вновь образуя HNO3. Свойства N2O5 определяются равновесием


N2O5 - хороший окислитель, легко реагирует, иногда бурно, с металлами и органическими соединениями и в чистом состоянии при нагреве взрывается. Вероятную структуру N2O5 можно представить как


Оксокислоты азота. Для азота известны три оксокислоты: гипоазотистая H2N2O2, азотистая HNO2 и азотная HNO3. Гипоазотистая кислота H2N2O2 - очень нестабильное соединение, образуется в неводной среде из соли тяжелого металла - гипонитрита при действии другой кислоты: M2N2O2 + 2HX 2MX + H2N2O2. При выпаривании раствора образуется белое взрывчатое вещество с предполагаемой структурой H-O-N=N-O-H.
Азотистая кислота HNO2 не существует в чистом виде, однако водные растворы ее невысокой концентрации образуются при добавлении серной кислоты к нитриту бария:

Азотистая кислота образуется также при растворении эквимолярной смеси NO и NO2 (или N2O3) в воде. Азотистая кислота немного сильнее уксусной кислоты. Степень окисления азота в ней +3 (ее структура H-O-N=O), т.е. она может являться и окислителем, и восстановителем. Под действием восстановителей она восстанавливается обычно до NO, а при взаимодействии с окислителями окисляется до азотной кислоты. Скорость растворения некоторых веществ, например металлов или иодид-иона, в азотной кислоте зависит от концентрации азотистой кислоты, присутствующей в виде примеси. Соли азотистой кислоты - нитриты - хорошо растворяются в воде, кроме нитрита серебра. NaNO2 применяется в производстве красителей. Азотная кислота HNO3 - один из наиболее важных неорганических продуктов основной химической промышленности. Она используется в технологиях множества других неорганических и органических веществ, например, взрывчатых веществ, удобрений, полимеров и волокон, красителей, фармацевтических препаратов и др.
См. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ .
ЛИТЕРАТУРА
Справочник азотчика. М., 1969 Некрасов Б.В. Основы общей химии. М., 1973 Проблемы фиксации азота. Неорганическая и физическая химия. М., 1982

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "АЗОТ" в других словарях:

    - (N) химический элемент, газ, без цвета, вкуса и запаха; составляет 4/5 (79 %) воздуха; уд. вес 0,972; атомный вес 14; сгущается в жидкость при 140 °С. и давлении 200 атмосфер; составная часть многих растительных и животных веществ. Словарь… … Словарь иностранных слов русского языка

    АЗОТ - АЗОТ, хим. элемент, симв. N (франц. AZ), порядковый номер 7, ат. в. 14,008; точка кипения 195,7°; 1 л А. при 0° и 760 мм давл. весит 1,2508 г [лат. Nitrogenium («порождающий селитру»), нем. Stickstoff («удушающее… … Большая медицинская энциклопедия

    - (лат. Nitrogenium) N, химический элемент V группы периодической системы, атомный номер 7, атомная масса 14,0067. Название от греческой a отрицательная приставка и zoe жизнь (не поддерживает дыхания и горения). Свободный азот состоит из 2 атомных… … Большой Энциклопедический словарь

    азот - а м. azote m. <араб. 1787. Лексис.1. алхим. Первая материя металлов металлическая ртуть. Сл. 18. Пустился он <парацельс> на конец по свету, предлагая всем за весьма умеренную цену свой Лауданум и свой Азот, для изцеления всех возможных… … Исторический словарь галлицизмов русского языка

    - (Nitrogenium), N, химический элемент V группы периодической системы, атомный номер 7, атомная масса 14,0067; газ, tкип 195,80 шС. Азот основной компонент воздуха (78,09% по объему), входит в состав всех живых организмов (в организме человека… … Современная энциклопедия

    Азот - (Nitrogenium), N, химический элемент V группы периодической системы, атомный номер 7, атомная масса 14,0067; газ, tкип 195,80 °С. Азот основной компонент воздуха (78,09% по объему), входит в состав всех живых организмов (в организме человека… … Иллюстрированный энциклопедический словарь

Элемент азот N - первый представитель главной подгруппы V группы Периодической системы. Его атомы содержат на внешнем энергетическом уровне пять электронов, из которых три электрона неспаренные (вспомните правило «8-N»). Отсюда следует, что атомы этих элементов могут присоединять три электрона, завершая внешний энергетический уровень, и вследствие этого приобретают степень окисления -3, например в соединениях с водородом - аммиаке NН3 и с металлами - нитридах Li3N, Mg3N2 и др.
Атомы азота могут также отдавать свои внешние электроны более электроотрицательным элементам (фтору, кислороду) и приобретать при этом степени окисления +3 и +5. Атомы азота проявляют восстановительные свойства и в степенях окисления +1, +2, +4.

Азот - простое вещество. В свободном состоянии азот существует в виде двухатомной молекулы М2. В этой молекуле два атома N связаны очень прочной тройной ковалентной связью:

Эту связь можно обозначить и так:
N=N

Азот - бесцветный газ без запаха и вкуса. В воде растворяется хуже кислорода. Прочностью молекулы азота обусловлена его химическая инертность.
При обычных условиях азот взаимодействует только с литием, образуя нитрид Li3N:
6Li + N2 = 2Li3N
С другими металлами он взаимодействует только при высоких температурах.
Также при высоких температурах и давлении в присутствии катализатора азот реагирует с водородом, образуя аммиак:
2N+ ЗН2 <-> 2NH3
(дайте характеристику этой реакции и рассмотрите условия смещения химического равновесия вправо).
При температуре электрической дуги он соединяется с кислородом, образуя оксид азота(II) (дайте характеристику этой реакции и также рассмотрите условия смещения химического равновесия вправо).
В природе азот содержится в основном в атмосфере - 78,09% по объему или 65,6% по массе. Над каждым гектаром земной поверхности постоянно «висят» 8 тыс. т азота. Из природных неорганических соединений азота наиболее известна чилийская селитра NaNO3.
Большая часть связанного азота содержится в органических веществах.
Азот, полученный перегонкой жидкого воздуха, в промышленности применяют для синтеза аммиака и производства азотной кислоты. Раньше этот газ в качестве инертной среды использовали для наполнения электрических ламп. В медицине чистый азот применяется в качестве инертной среды при лечении туберкулеза легких, а жидкий азот - при лечении заболеваний позвоночника, суставов и др.

Круговорот азота в природе. Азот - жизненно важный элемент. Все основные части клеток тканей организма построены из белковых молекул, в состав которых входит азот. Без белка нет жизни, а без азота нет белка. Человек получает белки из растительной и животной пищи, животные, в свою очередь, получают их также из растений. Следовательно, растения - один из источников пополнения азота, который поддерживает жизнь.
Содержание связанного азота в почве очень незначительно (до 1 кг в 1 т), к тому же большая часть его входит в состав органических соединений и непосредственно недоступна для растений. Однако постепенно, в результате деятельности бактерий, органические соединения превращаются в минеральные - соли аммония или нитраты, которые и усваиваются растениями.
Азот входит в состав растительных белков. Животные получают готовые белковые вещества из растений; в животном организме содержится от 1 до 10% азота (по массе), в шерсти и в рогах - около 15%. Все важнейшие части клеток (цитоплазма, ядро, оболочка) построены из белковых молекул.
Еще большее значение имеют особые бактерии, которые живут в клубеньках на корнях бобовых растений (клевера, гороха, вики, люпина и др.), их так и называют «клубеньковыми». Вот эти бактерии и связывают свободный атмосферный азот, т. е. превращают его в соединения, которые усваивают растения, образуя белки своего организма.
Соединения азота в почве пополняются также во время грозовых ливней. Как вы уже знаете, при этом из азота и кислорода образуется оксид азота(П), который под действием кислорода воздуха превращается в оксид азота(IV):
2NO + 02 = 2NO2
Последний взаимодействует с водой (также в присутствии кислорода воздуха), и получается азотная кислота:
4NO2 + 02 + 2Н20 = 4НNO3


Эта кислота, попадая в почву, реагирует с находящимися в ней соединениями натрия, кальция, калия и образует соли - селитры, необходимые для растений (рис. 27).
Открытие азота . В 1772 г. английский ученый Д. Резерфорд и шведский исследователь К. Шееле обнаружили в своих экспериментах по сжиганию веществ газ, который не поддерживает дыхания и горения. Позднее, в 1787 г., А. Лавуазье установил наличие в воздухе газа, не поддерживающего дыхания и горения, и по его предложению этому газу было дано название «азот», означающее «безжизненный» (от лат. а - нет и зоэ - жизнь). Другое латинское название нитрогениум, введенное в 1790 г. Ж. Шапталем, означает «рождающий селитру».

Аммиак

Прежде всего рассмотрим строение молекулы аммиака NН3. Как вы уже знаете, на внешнем энергетическом уровне атомы азота содержат пять электронов, из которых три электрона неспаренные. Именно они и участвуют в формировании трех ковалентных связей с тремя атомами водорода при образовании молекулы аммиака NH3:

Три общие электронные пары смещены в сторону более электроотрицательного атома азота, а так как молекула аммиака имеет форму треугольной пирамиды (рис. 28), то в результате смещения электронных пар возникает диполь, т. е. система с двумя полюсами.

Водородная связь - это химическая связь между атомами водорода одной молекулы и атомами очень электроотрицательных элементов (фтора, кислорода, азота), имеющих иеподеленные электронные пары другой молекулы.
Это очень слабая связь - примерно в 15-20 раз слабее ковалентной. Благодаря ей некоторые низкомолекулярные вещества (т. е. имеющие небольшую молекулярную массу) образуют ассоциаты, что приводит к повышению температур плавления и кипения веществ. Водородная связь образуется между молекулами воды, спиртов, фтороводорода.
Очень важную роль играет водородная связь в молекулах важнейших для живых существ соединений - белков и нуклеиновых кислот.
Аммиак - бесцветный газ с резким запахом, почти в два раза легче воздуха. Аммиак нельзя вдыхать продолжительное время, так как он ядовит. Этот газ легко сжижается при обычном давлении и температуре -33,4 °С, а при испарении жидкого аммиака из окружающей среды поглощается много тепла, поэтому аммиак применяется в холодильных установках.
Аммиак очень хорошо растворим в воде: при 20 °С в 1 объеме ее растворяется около 710 объемов аммиака (рис. 29). Концентрированный водный раствор аммиака (25%-ный по массе) называется водным аммиаком, или аммиачной водой, а используемый в медицине раствор аммиака известен под названием нашатырный спирт. Тот нашатырный спирт, который имеется в вашей домашней аптечке, содержит 10% аммиака.
Если к раствору аммиака прилить несколько капель фенолфталеина, то он окрасится в малиновый цвет, т. е. покажет щелочную среду:
NH3 + Н20 <-> NH3 Н20 -> NН4 + ОН-
Наличием гидроксид-ионов ОН- и объясняется щелочная реакция водных растворов аммиака. Если окрашенный фенолфталеином раствор аммиака подогреть, то окраска исчезнет (почему?).

Аммиак взаимодействует с кислотами, образуя соли аммония. Это взаимодействие наглядно наблюдается в следующем опыте: если стеклянную палочку или стакан, смоченные раствором аммиака, поднести к другой палочке или стакану, смоченным раствором соляной кислоты, то появится густой белый дым (рис. 30). Вот и верь после этого поговорке, что дыма без огня не бывает:
NH3 + НСl = NH4Сl
Хлорид аммония
И водный раствор аммиака, и соли аммония содержат особый ион - катион аммония NH4, играющий роль катиона металла. Он получается в результате того, что атом азота имеет свободную (неподеленную) электронную пару, за счет которой и формируется еще одна ковалентная связь с катионом водорода, переходящего к аммиаку от молекул кислот или воды:

Такой механизм образования ковалентной связи, которая возникает не в результате обобществления непарных электронов, а благодаря свободной электронной паре, имеющейся у одного из атомов, называется донорно-акцепторным.

В данном случае донором этой свободной электронной пары служит атом азота в аммиаке, а акцептором - катион водорода кислоты или воды.
Еще одно химическое свойство аммиака вы сможете сами прогнозировать, если обратите внимание на степень окисления в нем атомов азота, а именно -3. Конечно же аммиак - сильнейший восстановитель, т. е. его атомы азота могут только отдавать электроны, но не принимать их. Так, аммиак способен окисляться или до свободного азота (без участия катализатора):
4NН3 + 302 = 2N2 + 6Н20
или до оксида азота(II) (в присутствии катализатора):
4NН3 + 502 = 4N + 6Н20
Как производят аммиак в промышленности, вы уже знаете - синтезом из азота и водорода. В лаборатории аммиак получают действием гашеной извести Са(ОН)2 на соли аммония, чаще всего на хлорид аммония:
Са(ОН)2 + 2NН4С1 = СаСl2 + 2NН3 + 2Н20

Газ собирают в перевернутый кверху дном сосуд, а распознают или по запаху, или по посинению влажной красной лакмусовой бумажки, или по появлению белого дыма при внесенной палочке, смоченной соляной кислотой. Аммиак и его соли широко используются в промышленности и технике, в сельском хозяйстве, быту. Основные области их применения показаны на рисунке 31.

Рис. 31. Применение аммиака и солей аммония:

1-5 - производство минеральных удобрений; 6 - производство азотной кислоты; 7 - получение взрывчатых веществ; 8 - для паяния; 9 - в холодильных установках; 10 - в медицине и быту (нашатырный спирт)

6. Кислоты, ионное уравнение

С одним из представителей веществ этого класса вы уже познакомились, когда рассматривали летучие водородные соединения на примере хлороводорода HCl. Раствор его в воде и представляет собой соляную кислоту. Они имеет ту же формулу HCl. Аналогично при растворении в воде другого летучего водородного соединения - сероводорода H2S образуется раствор слабой сероводородной кислоты с формулой H2S.

Молекулы этих кислот состоят из двух элементов, то есть онн являются бинарными соединениями. Одннко к классу кислот относят также и соединения, состоящие из большего числи химических элементов. Кик привило, третьим элементом, входящим в состив кислоты, является кислород. Поэтому такие кислоты называют кислородсодержащими в отличие от HCl и H2S, которые называются бескислородными. Перечислим некоторые кислородсодержащие кислоты.

Обратите внимание, что все кислоты (н кислородсодержащие, и бескислородные) обязательно содержат водород, который в формуле записывается ня первом месте. Вся остальная часть формулы называется кислотным остатком. Например, у HCl кислотным остатком является Сl-.

Кислотами называются сложные вещества, молекулы которых состоят из атомов водорода и кислотных остатков.
Как правило, кислотные остатки образуют элементы-неметаллы.

По формулам кислот можно определить степени окисления атомов химических элементов, образующих кислоты.
Для бинарных кислот это сделать просто. Так как у водорода степень окисления +1. то в соединении H+1Cl-1 у хлора степень окисления -1, а в соединении H2+1S-2 у серы степень окисления -2.

Несложно будет рассчитать и степени окисления атомов элементов неметаллов, образующих кислотные остатки кислородсодержащих кислот. Нужно только помнить, что суммарная степень окисления атомов всех элементов в соединении равна нулю, а степени окисления водорода +1 и кислорода -2.
Зная степень окисления элемента-неметалла, образующего кислотный остаток кислородсодержащей кислоты, можно определить, какой оксид ей соответствует. Например, серной кислоте HgSO, в которой у серы степень окисления равна +6, соответствует оксид серы (VI) S03; азотной кислоте HN03, в которой у азота степень окисления равна +5, соответствует оксиl азота (V) NzOu.

По формулам кислот можно также определить и общий заряд, который имеют кислотные остатки. Заряд кислотного остатка всегда отрицателен и равен числу атомов водорода в кислоте. Число атомов водорода в кислоте называется основно стью. Для одноосновных кислот, содержащих один атом водорода, например HCl и HN08, заряды кислотных остатков равны 1-. Для двухосновных кислот, например H2SO4 и H2S, заряды кислотных остатков равны 2-, то есть
SO4 2- и S 2-.

В природе встречается много кислот: лимонная кислота в лимонах, яблочная кислота в яблоках, щавелевая кислота в листьях щавеля. Муравьи защищаются от врагов, разбрызгивая едкие капельки муравьиной кислоты. Она же содержится в пчелином яде и в жгучих волосках крапивы.

При скисании виноградного сока получается уксусная кислота, а при скисании молока - молочная кислота. Та же самая молочная кислота образуется при квашении капусты и при силосовании кормов для скота. Нам хорошо известны часто применяемые в быту лимонная и уксусная кислоты. Употребляемый в пищу уксус и представляет собой раствор уксусной кислоты.Многие кислоты нужны в народном хозяйстве в огромных количествах, производство этих веществ называется многотоннажным. К их числу относятся серная и соляная кислоты.

Серная кислота S2SO4 - бесцветная жидкость, вязкая, как масло, не имеющая запаха, почти вдвое тяжелее воды. Серная кислота поглощает влагу из воздуха и других газов. Это свойство серной кислоты используют для осушения некоторых газов.

При смешивании серной кислоты с водой выделяется большое количество теплоты. Если воду вливать в серную кислоту, то вода, не успев смешаться с кислотой, может закипеть и выбросить брызги серной кислоты на лицо и руки работающего. Чтобы этого не случилось, при растворении серной кислоты нужно вливать ее тонкой струей в воду и перемешивать.

Серная кислота обугливает древесину, кожу, ткани. Если в пробирку с серной кислотой опустить лучинку, то происходит химическая реакция - лучинка обугливается. Теперь понятно, как опасно попадание брызг серной кислоты на кожу человека и одежду.

Растворы всех кислот кислые, но распознавать концентрированные кислоты на вкус не решится ни один химик - это опасно. Есть более эффективные и безопасные способы обнаружения кислот. Их так же, как и щелочи, распознают с помощью индикаторов.

Прильем к растворам кислот по нескольку капелек раствора лакмуса фиолетового цвета. Лакмус окрасится в красный цвет. Метиловый оранжевый при действии кислот меняет оранжевый цвет на красно-розовый.

А вот кремниевую кислоту, поскольку она нерастворима в воде, так распознавать нельзя.

При обычных условиях кислоты могут быть твердыми (фосфорная Н3Р04, кремниевая Н2SiO2) и жидкими (в чистом виде жидкостью будет серная кислота H2SO4).

Такие газы, как хлороводород HCl, бромоводород НВг, сероводород H2S, в водных растворах образуют соответствующие кислоты.

Вы уже знаете, что угольная Н2СО3 и сернистая H2SO3, кислоты существуют только в водных растворах, так как являются слабыми и нестойкими. Они легко разлагаются на оксиды углерода (IV) и серы (IV) - С02 и SO2, соответственно, и воду. Поэтому выделить эти кислоты в чистом виде невозможно.Часто путают понятия летучесть и устойчивость (стабильность). Летучими называют кислоты, молекулы которых легко переходят в газообразное состояние, то есть испаряются. Например, соляная кислота является летучей, во устойчивой, стабильной кислотой. О летучести нестабильных кислот судить нельзя. Например, нелетучая нерастворимая кремниевая кислота при стоянии разлагается на воду u SiO2.Водные растворы соляной, азотной, серной, фосфорной и ряда других кислот не имеют окраски. Водные растворы хромовой кислоты Н2СгJ2 имеют желтую окраску, марганцевой кислоты НМnО4 - малиновую. Однако, какими бы разными ни были кислоты, все они образуют при диссоциации катионы водорода, которые и обусловливают ряд общих свойств: кислый вкус, изменение окраски индикаторов (лакмуса и метилового оранжевого), взаимодействие с другими веществами. Разделение кислот на группы по различным признакам представлено в таблице 10.

Задача 880.
Привести примеры соединений азота, в молекулах которых имеются связи, образованные по донорно-акцепторному механизму.
Решение:
Связь по донорно-акцепторному механизму (координационная связь) образуется за счёт обобществления электронной пары одного атома (донор) и вакантной орбитали другого атома (акцептор). Несвязывающая электронная пара атома азота способна с ионом водорода, имеющим свободную атомную орбиталь , образовывать ковалентную связь по донорно-акцепторному механизму. Так образуется катион аммония NH 4 + из молекулы аммиака и иона водорода:

В результате образования донорно-акцепторной связи несвязывающая электронная пара атома азота становится связывающей, образуется четыре связи между одним атомом азота и четырьмя атомами водорода:

Все четыре связи равнозначны и по длине, и по энергии.

Такая связь идентична ковалентной связи, образованной по обычному механизму, обобществлению неспаренных электронов двух атомов.

У аммиака и его производных, за исключением тригалогенидов азота, сильно выражена электроно-донорная способность. Поэтому аммиак, также практически все соединения, имеющие аминогруппы и группы: являются N-донорными лигандами, образующими комплексные соединения с катионами многих металлов. Имеются комплексы со следующими группами: глицианат-ион : глицилглицилцианат-ион : , этилендиамин: диэтилентриамин :

и др.. Связь в комплексных соединениях можно объяснить координационной связью между несвязывающими электронными парами атома азота лиганда и свободными орбиталями атома комплексообразователя, например, Cl 2 , Cl 2 и др. В аммиаке Н 3 и аминах как производных аммиака. Атом азота может образовывать координационную связь, например: хлорид аммония NH 4 Cl, гидроксид метиламмония CH 3 -NH 3 -OH, иодид тетраметиламмония (CH 3) 4 NI, гидроксид тетраэтиламмония (С 2 Н 5) 4 NOH, гидроксид аммония NH 4 OH, хлорид фениламина С6Н5NH3+Cl. Некоторые

производные аммиака, например: гидразин: , гидроксиламин: , а также хлорид гидразония N 2 H 5 Cl (+1), гидроксид гидразония N 2 H 5 (ОН) 2 (+2), гидроксид гидроксиламмония OH, гидроксид гидразония (+2) N 2 H 6 (OH) 2 , хлорид гидразония (+2) N 2 H 6 Cl 2 , хлорид гидроксиламмония NH 3 OHCl.

Задача 881.
Описать электронное строение молекулы N 2 с позиций методов ВС и МО.
Решение:

а) Электронное строение молекулы N 2 с позиций метода валентных связей

Атом азота на внешнем электронном слое содержит два спаренных электрона на 2s-подуровне и три неспаренных электрона на 2р-подуровне, по одному на каждой 2р-орбитали. Между двумя атомами азота образуется ковалентная связь тремя электронными парами за счёт спаривания трёх неспаренных электронов каждого атома. Спаренные электроны 2s-орбиталей каждого атома азота не участвуют в образовании связей. Поэтому молекулу N 2 в соответствии с теорией валентных связей можно изобразить как имеющую несвязывающие электронные пары у каждого атома азота: - = - , но в действительности электронная плотность сосредоточена в основном между атомами. Молекула N 2 имеет линейное строение. Так как атомы азота в молекуле N 2 одинаковы, то дипольный момент молекулы равен нулю.

б) Электронное строение молекулы N 2 с позиций метода Молекулярных орбиталей

Электронное строение молекулы N 2 можно объяснить с позиций метода молекулярных орбиталей.

С позиций метода МО электронное строение молекулы N 2 можно представить так:

Молекула имеет электронную конфигурацию:

KK(σ}