Проекций оси положение точки. Проецирование точки

ПРОЕКЦИИ ТОЧКИ.

ОРТОГОНАЛЬНАЯ СИСТЕМА ДВУХ ПЛОСКОСТЕЙ ПРОЕКЦИЙ.

Сущность метода ортогонального проецирования заключается в том, что предмет проецируется на две взаимно перпендикулярные плоскости лучами, ортогональными (перпендикулярными) к этим плоскостям..

Одну из плоскостей проекций H располагают горизонтально, а вторую V — вертикально. Плоскость H называют горизонтальной плоскостью проекций, V — фронтальной. Плоскости H и V бесконечны и непрозрачны. Линия пересечения плоскостей проекций называется осью координат и обозначается OX . Плоскости проекций делят пространство на четыре двугранных угла — четверти.

Рассматривая ортогональные проекции, предполагают, что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей проекций. Так как эти плоскости непрозрачны, то видимыми для наблюдателя будут только те точки, линии и фигуры, которые расположены в пределах той же первой четверти.

При построении проекций необходимо помнить, что ортогональной проекцией точки на плоскость называется основание перпендикуляра, опущенного из данной точки на эту плоскость.

На рисунке показаны точка А и ее ортогональные проекции а 1 и а 2 .

Точку а 1 называют горизонтальной проекцией точки А, точку а 2 — ее фронтальной проекцией . Каждая из них является основанием перпендикуляра, опущенного из точки А соответственно на плоскости H и V .

Можно доказать, что проекции точки всегда расположены на прямых, перпенди кулярных оси ОХ и пересекающих эту ось в одной и той же точке. Действительно, проецирующие лучи А а 1 и А а 2 определяют плоскость, перпендикулярную плоскостям проекций и линии их пересечения — оси ОХ. Эта плоскость пересекает H и V по прямым а 1 а x и а 1 а x , которые образуют с осью OX и друг с другом прямые углы с вершиной в точке а x .

Справедливо и обратное, т. е. если на плоскостях проекций даны точки a 1 и a 2 , расположенные на прямых, пересекающих ось OX в данной точке под прямым углом, то они являются проекциями некоторой точки А. Эта точка определяется пересечением перпендикуляров, восставленных из точек a 1 и a 2 к плоскостям H и V .

Заметим, что положение плоскостей проекций в пространстве может оказаться иным. Например, обе плоскости, будучи взаимно перпендикулярными, могут быть вертикальными Но и в этом случае доказанное выше предположение об ориентации разноименных проекций точек относительно оси остается справедливым.

Чтобы получить плоский чертеж, состоящий из указанных выше проекций, плоскость H совмещают вращением вокруг оси OX с плоскостью V , как показано стрелками на рисунке. В результате передняя полуплоскость H будет совмещена с нижней полуплоскостью V , а задняя полуплоскость H — с верхней полуплоскостью V .

Проекционный чертеж, на котором плоскости проекций со всем тем, что на них изображено, совмещены определенным образом одна с другой, называется эпюром (от франц. еpure - чертеж). На рисунке показан эпюр точки А.

При таком способе совмещения плоскостей H и V проекции a 1 и a 2 окажутся расположенными на одном перпендикуляре к оси OX . При этом расстояние a 1 a x от горизонтальной проекции точки до оси OX А до плоскости V , а расстояние a 2 a x от фронтальной проекции точки до оси OX равно расстоянию от самой точки А до плоскости H .

Прямые линии, соединяющие разноименные проекции точки на эпюре, условимся называть линиями проекционной связи .

Положение проекций точек на эпюре зависит от того, в какой четверти находится данная точка. Так, если точка В расположена во второй четверти, то после совмещения плоскостей обе проекции окажутся лежащими над осью OX.

Если точка С находится в третьей четверти, то ее горизонтальная проекция после совмещения плоскостей окажется над осью, а фронтальная — под осью OX . Наконец, если точка D расположена в четвертой четверти, то обе проекции ее окажутся под осью OX . На рисунке показаны точки М и N , лежащие на плоскостях проекций. При таком положении точка совпадает с одной из своих проекций, другая же проекция ее оказывается лежащей на оси OX . Эта особенность отражена и в обозначении: около той проекции, с которой совпадает сама точка, пишется заглавная буква без индекса.

Следует отметить и тот случай, когда обе проекции точки совпадают. Так будет, если точка находится во второй или четвертой четверти на одинаковом расстоянии от плоскостей проекций. Обе проекции совмещаются с самой точкой, если последняя расположена на оси OX .

ОРТОГОНАЛЬНАЯ СИСТЕМА ТРЕХ ПЛОСКОСТЕЙ ПРОЕКЦИЙ.

Выше было показано, что две проекции точки определяют ее положение в пространстве. Так как каждая фигура или тело представляет собой совокупность точек, то можно утверждать, что и две ортогональные проекции предмета (при наличии буквенных обозначений) вполне определяют его форму.

Однако в практике изображения строительных конструкций, машин и различных инженерных сооружений возникает необходимость в создании дополнительных проекций. Поступают так с единственной целью — сделать проекционный чертеж более ясным, удобочитаемым.

Модель трех плоскостей проекций показана на рисунке. Третья плоскость, перпендикулярная и H и V , обозначается буквой W и называется профильной.

Проекции точек на эту плоскость будут также именоваться профильными, а обозначают их заглавными буквами или цифрами с индексом 3 (a з, b з, c з, ... 1з, 2з, 3 3 ...).

Плоскости проекций, попарно пересекаясь, определяют три оси: О X , О Y и О Z , которые можно рассматривать как систему прямоугольных декартовых координат в пространстве с началом в точке О. Система знаков, указанная на рисунке, соответствует «правой системе» координат.

Три плоскости проекций делят пространство на восемь трехгранных углов — это так называемые октанты . Нумерация октантов дана на рисунке.

Для получения эпюра плоскости H и W вращают, как показано на рисунке, до совмещения с плоскостью V . В результате вращения передняя полуплоскость H оказывается совмещенной с нижней полуплоскостью V , а задняя полуплоскость H — с верхней полуплоскостью V . При повороте на 90° вокруг оси О Z передняя полуплоскость W совместится с правой полуплоскостью V , а задняя полуплоскость W — с левой полуплоскостью V .

Окончательный вид всех совмещенных плоскостей проекций дан на рисунке. На этом чертеже оси О X и О Z , лежащие в не подвижной плоскости V , изображены только один раз, а ось О Y показана дважды. Объясняется это тем, что, вращаясь с плоскостью H , ось О Y на эпюре совмещается с осью О Z , а вращаясь вместе с плоскостью W , эта же ось совмещается с осью О X .

В дальнейшем при обозначении осей на эпюре отрицательные полуоси (— О X , О Y , О Z ) указываться не будут.

ТРИ КООРДИНАТЫ И ТРИ ПРОЕКЦИИ ТОЧКИ И ЕЕ РАДИУСА-ВЕКТОРА.

Координатами называют числа, которые ставят в соответствие точке для определе ния ее положения в пространстве или на поверхности.

В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат х, у и z .

Координату х называют абсциссой , у ординатой и z аппликатой. Абсцисса х определяет расстояние от данной точки до плоскости W , ордината у — до плоскости V и аппликата z - до плоскости H . Приняв для отсчета координат точки систему, показанную на рисунке, составим таблицу знаков координат во всех восьми октантах. Какая-либо точка пространства А, заданная координатами, будет обозначаться так: A (х, у, z ).

Если х = 5, y = 4 и z = 6, то запись примет следующий вид А (5, 4, 6). Эта точка А, все координаты которой положительны, находится в первом октанте

Координаты точки А являются вместе с тем и координатами ее радиуса-вектора

ОА по отношению к началу координат. Если i , j , k — единичные векторы, направленные соответственно вдоль координатных осей х, у, z (рисунок), то

ОА = О A x i +ОА y j + ОА z k , где ОА Х, ОА У, ОА г — координаты вектора ОА

Построение изображения самой точки и ее проекций на пространственной модели (рисунок) рекомендуется осуществлять с помощью координатного прямоугольного параллелепипеда. Прежде всего на осях координат от точки О откладывают отрезки, соответственно равные 5, 4 и 6 единицам длины. На этих отрезках a x , О a y , О a z ), как на ребрах, строят прямоугольный параллелепипед. Вершина его, противоположная началу координат, и будет определять заданную точку А. Легко заметить, что для определения точки А достаточно построить только три ребра параллелепипеда, например О a x , a x a 1 и a 1 А или О a y , a y a 1 и a 1 A и т. д. Эти ребра образуют координатную ломаную линию, длина каждого звена которой определяется соответствующей координатой точки.

Однако построение параллелепипеда позволяет определить не только точку А, но и все три ее ортогональные проекции.

Лучами, проецирующими точку на плоскости H , V , W являются те три ребра параллелепипеда, которые пересекаются в точке А.

Каждая из ортогональных проекций точки А, будучи расположенной на плоскости, определяется только двумя координатами.

Так, горизонтальная проекция a 1 определяется координатами х и у, фронтальная проекция a 2 — координатами х и z , профильная проекция a 3 координатами у и z . Но две любые проекции определяются тремя координатами. Вот почему задание точки двумя проекциями равносильно заданию точки тремя координатами.

На эпюре (рисунок), где все плоскости проекций совмещены, проекции a 1 и a 2 окажутся на одном перпендикуляре к оси О X , а проекции a 2 и a 3 на одном перпендикуляре к оси OZ .

Что касается проекций a 1 и a 3 , то и они связаны прямыми a 1 a y и a 3 a y , перпендикулярными оси О Y . Но так как эта ось на эпюре занимает два положения, то отрезок a 1 a y не может быть продолжением отрезка a 3 a y .

Построение проекций точки А (5, 4, 6) на эпюре по заданным координатам выполняют в такой последовательности: прежде всего на оси абсцисс от начала координат откладывают отрезок О a x = х (в нашем случае х = 5), затем через точку a x проводят перпендикуляр к оси О X , на котором с учетом знаков откладываем отрезки a x a 1 = у (получаем a 1 ) и a x a 2 = z (получаем a 2 ). Остается построить профильную проекцию точки a 3 . Так как профильная и фронтальная проекции точки должны быть расположены на одном перпендикуляре к оси OZ , то через a 3 проводят прямую a 2 a z ^ OZ .

Наконец, возникает последний вопрос: на каком расстоянии от оси О Z должна находиться a 3 ?

Рассматривая координатный параллелепипед (см. рисунок), ребра которого a z a 3 = Oa y = a x a 1 = y заключаем, что искомое расстояние a z a 3 равно у. Отрезок a z a 3 откладывают вправо от оси ОZ, если у>0, и влево, если у

Проследим за тем, какие изменения произойдут на эпюре, когда точка начнет менять свое положение в пространстве.

Пусть, например, точка А (5, 4, 6) станет перемещаться по прямой, перпендикулярной плоскости V . При таком движении будет меняться только одна координата у, показывающая расстояние от точки до плоскости V . Постоянными будут оставаться координаты х и z , а проекция точки, определяемая этими координатами, т. е. a 2 не изменит своего положения.

Что касается проекций a 1 и a 3 , то первая начнет приближаться к оси О X , вторая — к оси О Z . На рисунках новому положению точки соответствуют обозначения a 1 (a 1 1 a 2 1 a 3 1 ). В тот момент, когда точка окажется на плоскости V (y = 0), две из трех проекций (a 1 2 и a 3 2 ) будут лежать на осях.

Переместившись из I октанта во II , точка начнет удаляться от плоскости V , координата у станет отрицательной, ее абсолютная величина будет возрастать. Горизонтальная проекция этой точки, будучи расположенной на задней полуплоскости H , на эпюре окажется выше оси О X , а профильная проекция, находясь на задней полуплоскости W , на эпюре будет слева от оси О Z . Как всегда, отрезок a z a 3 3 = у.

На последующих эпюрах мы не станем обозначать буквами точки пересечения координатных осей с линиями проекционной связи. Это в какой-то мере упростит чертеж.

В дальнейшем встретятся эпюры и без координатных осей. Так поступают на практике при изображении предметов, когда существенно только само изображе ние предмета, а не его положение относи тельно плоскостей проекций.

Плоскости проекций в этом случае определены с точностью лишь до параллельного переноса (рисунок). Их обычно перемещают параллельно самим себе с таким расчетом, чтобы все точки предмета оказались над плоскостью H и перед плоскостью V . Так как положение оси X 12 оказывается неопределенным, то образование эпюра в этом случае не нужно связывать с вращением плоскостей вокруг координатной оси. При переходе к эпюру плоскости H и V совмещают так, чтобы разноименные проекции точек были расположены на вертикальных прямых.

Безосный эпюр точек А и В (рисунок) не определяет их положения в пространстве, но позволяет судить об их относительной ориентировке. Так, отрезок △x характеризует смещение точки А по отношению к точке В в направлении, параллельном плоскостям H и V. Иными словами, △x указывает, насколько точка А расположена левее точки В. Относительное смещение точки в направлении, перпендикулярном плоскости V, определяется отрезком △y, т. е. точка А в нашем примере ближе к наблюдателю, чем точка В, на расстояние, равное △y.

Наконец, отрезок △z показывает превышение точки А над точкой В.

Сторонники безосного изучения курса начертательной геометрии справедливо указывают, что при решении многих задач можно обходиться без осей координат. Однако полный отказ от них нельзя признать целесообразным. Начертательная геометрия призвана подготовить будущего инженера не только к грамотному выполнению чертежей, но и к решению различных технических задач, среди которых не последнее место занимают задачи пространственной статики и механики. А для этого необходимо воспитывать умение ориентировать тот или иной предмет относительно декартовых осей координат. Указанные навыки будут необходимы и при изучении таких разделов начертательной геометрии, как перспектива и аксонометрия. Поэтому на ряде эпюров этой книги мы сохраняем изображения координатных осей. Такие чертежи определяют не только форму предмета, но и его расположение относительно плоскостей проекций.

В этой статье мы найдем ответы на вопросы о том, как создать проекцию точки на плоскость и как определить координаты этой проекции. Опираться в теоретической части будем на понятие проецирования. Дадим определения терминам, сопроводим информацию иллюстрациями. Закрепим полученные знания при решении примеров.

Yandex.RTB R-A-339285-1

Проецирование, виды проецирования

Для удобства рассмотрения пространственных фигур используют чертежи с изображением этих фигур.

Определение 1

Проекция фигуры на плоскость – чертеж пространственной фигуры.

Очевидно, что для построения проекции существует ряд используемых правил.

Определение 2

Проецирование – процесс построения чертежа пространственной фигуры на плоскости с использованием правил построения.

Плоскость проекции - это плоскость, в которой строится изображение.

Использование тех или иных правил определяет тип проецирования: центральное или параллельное .

Частным случаем параллельного проецирования является перпендикулярное проецирование или ортогональное: в геометрии в основном используют именно его. По этой причине в речи само прилагательное «перпендикулярное» часто опускают: в геометрии говорят просто «проекция фигуры» и подразумевают под этим построение проекции методом перпендикулярного проецирования. В частных случаях, конечно, может быть оговорено иное.

Отметим тот факт, что проекция фигуры на плоскость по сути есть проекция всех точек этой фигуры. Поэтому, чтобы иметь возможность изучать пространственную фигуру на чертеже, необходимо получить базовый навык проецировать точку на плоскость. О чем и будем говорить ниже.

Напомним, что чаще всего в геометрии, говоря о проекции на плоскость, имеют в виду применение перпендикулярной проекции.

Произведем построения, которые дадут нам возможность получить определение проекции точки на плоскость.

Допустим, задано трехмерное пространство, а в нем - плоскость α и точка М 1 , не принадлежащая плоскости α . Начертим через заданную точку М 1 прямую а перпендикулярно заданной плоскости α . Точку пересечения прямой a и плоскости α обозначим как H 1 , она по построению будет служить основанием перпендикуляра, опущенного из точки М 1 на плоскость α .

В случае, если задана точка М 2 , принадлежащая заданной плоскости α , то М 2 будет служить проекцией самой себя на плоскость α .

Определение 3

– это либо сама точка (если она принадлежит заданной плоскости), либо основание перпендикуляра, опущенного из заданной точки на заданную плоскость.

Нахождение координат проекции точки на плоскость, примеры

Пускай в трехмерном пространстве заданы: прямоугольная система координат O x y z , плоскость α , точка М 1 (x 1 , y 1 , z 1) . Необходимо найти координаты проекции точки М 1 на заданную плоскость.

Решение очевидным образом следует из данного выше определения проекции точки на плоскость.

Обозначим проекцию точки М 1 на плоскость α как Н 1 . Согласно определению, H 1 является точкой пересечения данной плоскости α и прямой a , проведенной через точку М 1 (перпендикулярной плоскости). Т.е. необходимые нам координаты проекции точки М 1 – это координаты точки пересечения прямой a и плоскости α .

Таким образом, для нахождения координат проекции точки на плоскость необходимо:

Получить уравнение плоскости α (в случае, если оно не задано). Здесь вам поможет статья о видах уравнений плоскости;

Определить уравнение прямой a , проходящей через точку М 1 и перпендикулярной плоскости α (изучите тему об уравнении прямой, проходящей через заданную точку перпендикулярно к заданной плоскости);

Найти координаты точки пересечения прямой a и плоскости α (статья – нахождение координат точки пересечения плоскости и прямой). Полученные данные и будут являться нужными нам координатами проекции точки М 1 на плоскость α .

Рассмотрим теорию на практических примерах.

Пример 1

Определите координаты проекции точки М 1 (- 2 , 4 , 4) на плоскость 2 х – 3 y + z - 2 = 0 .

Решение

Как мы видим, уравнение плоскости нам задано, т.е. составлять его необходимости нет.

Запишем канонические уравнения прямой a , проходящей через точку М 1 и перпендикулярной заданной плоскости. В этих целях определим координаты направляющего вектора прямой a . Поскольку прямая а перпендикулярна заданной плоскости, то направляющий вектор прямой a – это нормальный вектор плоскости 2 х – 3 y + z - 2 = 0 . Таким образом, a → = (2 , - 3 , 1) – направляющий вектор прямой a .

Теперь составим канонические уравнения прямой в пространстве, проходящей через точку М 1 (- 2 , 4 , 4) и имеющей направляющий вектор a → = (2 , - 3 , 1) :

x + 2 2 = y - 4 - 3 = z - 4 1

Для нахождения искомых координат следующим шагом определим координаты точки пересечения прямой x + 2 2 = y - 4 - 3 = z - 4 1 и плоскости 2 х - 3 y + z - 2 = 0 . В этих целях переходим от канонических уравнений к уравнениям двух пересекающихся плоскостей:

x + 2 2 = y - 4 - 3 = z - 4 1 ⇔ - 3 · (x + 2) = 2 · (y - 4) 1 · (x + 2) = 2 · (z - 4) 1 · (y - 4) = - 3 · (z + 4) ⇔ 3 x + 2 y - 2 = 0 x - 2 z + 10 = 0

Составим систему уравнений:

3 x + 2 y - 2 = 0 x - 2 z + 10 = 0 2 x - 3 y + z - 2 = 0 ⇔ 3 x + 2 y = 2 x - 2 z = - 10 2 x - 3 y + z = 2

И решим ее, используя метод Крамера:

∆ = 3 2 0 1 0 - 2 2 - 3 1 = - 28 ∆ x = 2 2 0 - 10 0 - 2 2 - 3 1 = 0 ⇒ x = ∆ x ∆ = 0 - 28 = 0 ∆ y = 3 2 0 1 - 10 - 2 2 2 1 = - 28 ⇒ y = ∆ y ∆ = - 28 - 28 = 1 ∆ z = 3 2 2 1 0 - 10 2 - 3 2 = - 140 ⇒ z = ∆ z ∆ = - 140 - 28 = 5

Таким образом, искомые координаты заданной точки М 1 на заданную плоскость α будут: (0 , 1 , 5) .

Ответ: (0 , 1 , 5) .

Пример 2

В прямоугольной системе координат O x y z трехмерного пространства даны точки А (0 , 0 , 2) ; В (2 , - 1 , 0) ; С (4 , 1 , 1) и М 1 (-1, -2, 5). Необходимо найти координаты проекции М 1 на плоскость А В С

Решение

В первую очередь запишем уравнение плоскости, проходящей через три заданные точки:

x - 0 y - 0 z - 0 2 - 0 - 1 - 0 0 - 2 4 - 0 1 - 0 1 - 2 = 0 ⇔ x y z - 2 2 - 1 - 2 4 1 - 1 = 0 ⇔ ⇔ 3 x - 6 y + 6 z - 12 = 0 ⇔ x - 2 y + 2 z - 4 = 0

Запишем параметрические уравнения прямой a , которая будет проходить через точку М 1 перпендикулярно плоскости А В С. Плоскость х – 2 y + 2 z – 4 = 0 имеет нормальный вектор с координатами (1 , - 2 , 2) , т.е. вектор a → = (1 , - 2 , 2) – направляющий вектор прямой a .

Теперь, имея координаты точки прямой М 1 и координаты направляющего вектора этой прямой, запишем параметрические уравнения прямой в пространстве:

Затем определим координаты точки пересечения плоскости х – 2 y + 2 z – 4 = 0 и прямой

x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ

Для этого в уравнение плоскости подставим:

x = - 1 + λ , y = - 2 - 2 · λ , z = 5 + 2 · λ

Теперь по параметрическим уравнениям x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ найдем значения переменных x , y и z при λ = - 1: x = - 1 + (- 1) y = - 2 - 2 · (- 1) z = 5 + 2 · (- 1) ⇔ x = - 2 y = 0 z = 3

Таким образом, проекция точки М 1 на плоскость А В С будет иметь координаты (- 2 , 0 , 3) .

Ответ: (- 2 , 0 , 3) .

Отдельно остановимся на вопросе нахождения координат проекции точки на координатные плоскости и плоскости, которые параллельны координатным плоскостям.

Пусть задана точки М 1 (x 1 , y 1 , z 1) и координатные плоскости O x y , О x z и O y z . Координатами проекции этой точки на данные плоскости будут соответственно: (x 1 , y 1 , 0) , (x 1 , 0 , z 1) и (0 , y 1 , z 1) . Рассмотрим также плоскости, параллельные заданным координатным плоскостям:

C z + D = 0 ⇔ z = - D C , B y + D = 0 ⇔ y = - D B

И проекциями заданной точки М 1 на эти плоскости будут точки с координатами x 1 , y 1 , - D C , x 1 , - D B , z 1 и - D A , y 1 , z 1 .

Продемонстрируем, как был получен этот результат.

В качестве примера определим проекцию точки М 1 (x 1 , y 1 , z 1) на плоскость A x + D = 0 . Остальные случаи – по аналогии.

Заданная плоскость параллельна координатной плоскости O y z и i → = (1 , 0 , 0) является ее нормальным вектором. Этот же вектор служит направляющим вектором прямой, перпендикулярной к плоскости O y z . Тогда параметрические уравнения прямой, проведенной через точку M 1 и перпендикулярной заданной плоскости, будут иметь вид:

x = x 1 + λ y = y 1 z = z 1

Найдем координаты точки пересечения этой прямой и заданной плоскости. Подставим сначала в уравнение А x + D = 0 равенства: x = x 1 + λ , y = y 1 , z = z 1 и получим: A · (x 1 + λ) + D = 0 ⇒ λ = - D A - x 1

Затем вычислим искомые координаты, используя параметрические уравнения прямой при λ = - D A - x 1:

x = x 1 + - D A - x 1 y = y 1 z = z 1 ⇔ x = - D A y = y 1 z = z 1

Т.е., проекцией точки М 1 (x 1 , y 1 , z 1) на плоскость будет являться точка с координатами - D A , y 1 , z 1 .

Пример 2

Необходимо определить координаты проекции точки М 1 (- 6 , 0 , 1 2) на координатную плоскость O x y и на плоскость 2 y - 3 = 0 .

Решение

Координатной плоскости O x y будет соответствовать неполное общее уравнение плоскости z = 0 . Проекция точки М 1 на плоскость z = 0 будет иметь координаты (- 6 , 0 , 0) .

Уравнение плоскости 2 y - 3 = 0 возможно записать как y = 3 2 2 . Теперь просто записать координаты проекции точки M 1 (- 6 , 0 , 1 2) на плоскость y = 3 2 2:

6 , 3 2 2 , 1 2

Ответ: (- 6 , 0 , 0) и - 6 , 3 2 2 , 1 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Точка, как математическое понятие, не имеет размеров. Очевидно, если объект проецирования является нульмерным объектом, то говорить о его проецировании бессмысленно.

Рис.9 Рис.10

В геометрии под точкой целесообразно принимать физический объект, имеющий линейные измерения. Условно за точку можно принять шарик с бесконечно малым радиусом. При такой трактовке понятия точки можно говорить о ее проекциях.

При построении ортогональных проекций точки следует руководствоваться первым инвариантным свойством ортогонального проецирования: ортогональная проекция точки есть точка.

Положение точки в пространстве определяется тремя координатами: X, Y, Z, показывающие величины расстояний, на которые точка удалена от плоскостей проекций. Чтобы определить эти расстояния, достаточно определить точки встречи этих прямых с плоскостями проекций и измерить соответствующие величины, которые укажут соответственно значения абсциссы X , ординаты Y и аппликаты Z точки (рис. 10).

Проекцией точки является основание перпендикуляра, опущенного из точки на соответствующую плоскость проекций. Горизонтальной проекцией точки а называют прямоугольную проекцию точки на горизонтальной плоскости проекций, фронтальной проекцией а / – соответственно на фронтальной плоскости проекций и профильной а // – на профильной плоскости проекций.

Прямые Аа, Аa / и Аa // называются проецирующими прямыми. При этом прямую Аа, проецирующую точку А на горизонтальную плоскость проекций, называют горизонтально- проецирующей прямой, Аa / и Аa // - соответственно: фронтально и профильно-проецирущими прямыми.

Две проецирующие прямые, проходящие через точку А определяют плоскость, которую принято называть проецирующей.

При преобразовании пространственного макета, фронтальная проекция точки А – а / остается на месте, как принадлежащая плоскости, которая не менят своего положения при рассматриваемом преобразовании. Горизонтальная проекция – а вместе с горизонтальной плоскостью проекции повернется понаправлению движения часовой стрелки и расположится на одном перепендикуляре к оси Х с фронтальной проекцией. Профильная проекция - a // будет вращаться вместе с профильной плоскостью и к концу преобразования займет положение, указанное на рисунке 10. При этом - a // будет принадлежать перпендикуляру к оси Z , проведенному из точки а / и будет удалена от оси Z на такое же расстояние, на какое горизонтальная проекция а удалена от оси Х . Поэтому связь между горизонтально и профильной проекциями точки может быть установлена с помощью двух ортогональных отрезков аа y и а y a // и сопрягающей их дуги окружности с центром в точке пересечения осей (О – начало координат). Отмеченной связью пользуются для нахождения недостающей проекции (при двух заданных). Положение профильной (горизонтальной) проекции по заданным горизонтальной (профильной) и фронтальной проекциям может быть найдено с помощью прямой, проведенной под углом 45 0 из начала координат к оси Y (эту биссектрису называют прямой k – постоянной Монжа). Первый из указанных способов предпочтителен, как более точный.


Из этого следует:

1. Точка в пространстве удалена:

от горизонтальной плоскости H Z,

от фронтальной плоскости V на величину заданной координаты Y,

от профильной плоскости W на величину координаты.X.

2. Две проекции любой точки принадлежат одному перпендикуляру (одной линии связи):

горизонтальная и фронтальная – перпендикуляру к оси X,

горизонтальная и профильная – перпендикуляру к оси Y,

фронтальная и профильная – перпендикуляру к оси Z.

3. Положение точки в пространстве вполне определяется положением ее двух ортогональных проекций. Из этого следует – по двум любым заданным ортогональным проекциям точки всегда иожно построить недостающую ее третью проекцию.


Если точка имеет три определенные координаты, то такую точку называют точкой общего положения. Если у точки одна или две координаты имеют нулевое значение, то такую точку называют точкой частного положения.

Рис. 11 Рис. 12

На рисунке 11 дан пространственный чертеж точек частного положения, на рисунке 12 – комплексных чертеж (эпюр) этих точек. Точка А принадлежит фронтальной плоскости проекций, точка В – горизонтальной плоскости проекций, точка С – профильной плоскости проекций и точка D – оси абсцисс (Х ).

Проецирование точки на три плоскости проекций координатного угла начинают с получения ее изображения на плоскости H - горизонтальной плоскости проекций. Для этого через точку А (рис. 4.12, а) проводят проецирующий луч перпендикулярно плоскости H.

На рисунке перпендикуляр к плоскости Н параллелен оси Oz. Точку пересечения луча с плоскостью Н (точку а) выбирают произ­вольно. Отрезок Аа определяет, на каком расстоянии находится точка А от плоскости Н, указывая тем самым однозначно положение точки А на рисунке по отношению к плоскостям проекций. Точка а является прямоугольной проекцией точки А на плоскость Н и называется горизонтальной проекцией точки А (рис. 4.12, а).

Для получения изображения точки А на плоскости V (рис. 4.12,б) через точку А проводят проецирующий луч перпендикулярно фронтальной плоскости проекций V. На рисунке перпендикуляр к плоскости V параллелен оси Оу. На плоскости Н расстояние от точки А до плоскости V изобразится отрезком аа х, параллельным оси Оу и перпендикулярным оси Ох. Если представить себе, что проецирующий луч и его изображение проводят одновременно в направлении плоскости V, то когда изображение луча пересечет ось Ох в точке а х, луч пересечет плоскость V в точке а". Проведя из точки а х в плоскости V перпендикуляр к оси Ох, который является изображением проецирующего луча Аа на плоскости V, в пересечении с проецирующим лучом получают точку а". Точка а" является фронтальной проекцией точки А, т. е. ее изображением на плоскости V.

Изображение точки А на профильной плоскости проекций (рис. 4.12, в) строят с помощью проецирующего луча, перпендикулярного плоскости W. На рисунке перпендикуляр к плоскости W параллелен оси Ох. Проецирующий луч от точки А до плоскости W на плоскости Н изобразится отрезком аа у, параллельным оси Ох и перпендикулярным оси Оу. Из точки Оу параллельно оси Oz и перпендикулярно оси Оу строят изображение проецирующего луча аА и в пересечении с проецирующим лучом получают точку а". Точка а" является профильной проекцией точки А, т. е. изображением точки А на плоскости W.

Точку а" можно построить, проведя от точки а" отрезок а"а z (изображение проецирующего луча Аа" на плоскости V) параллельно оси Ох, а от точки а z - отрезок а"а z параллельно оси Оу до пересечения с проецирующим лучом.

Получив три проекции точки А на плоскостях проекций, координатный угол развертывают в одну плоскость, как показано на рис. 4.11,б, вместе с проекциями точки А и проецирующих лучей, а точку А и проецирующие лучи Аа, Аа" и Аа" убирают. Края совмещенных плоскостей проекций не проводят, а проводят только оси проекций Oz, Оу и Ох, Оу 1 (рис. 4.13).

Анализ ортогонального чертежа точки показывает, что три расстояния - Аа", Аа и Аа" (рис. 4.12, в), характеризующие положение точки А в пространстве, можно определить, отбросив сам объект проецирования - точку А, на развернутом в одну плоскость координатном угле (рис. 4.13). Отрезки а"а z , аа y и Оа х равны Аа" как противоположные стороны соответствующих прямоугольников (рис. 4.12,в и 4.13). Они определяют расстояние, на котором находится точка А от профильной плоскости проекций. Отрезки а"а х, а"а у1 и Оа у равны отрезку Аа, определяют расстояние от точки А до горизонтальной плоскости проекций, отрезки аа х, а"а z и Оа y 1 равны отрезку Аа", определяющему расстояние от точки А до фронтальной плоскости проекций.

Отрезки Оа х, Оа у и Оа z , расположенные на осях проекций, являются графическим выражением размеров координат X, Y и Z точки А. Координаты точки обозначают с индексом соответствующей буквы. Измерив величину этих отрезков, можно определить положение точки в пространстве, т. е. задать координаты точки.

На эпюре отрезки а"а х и аа х располагаются как одна линия, перпендикулярная к оси Ох а отрезки а"а z и a"a z - к оси Оz. Эти лини называются линиями проекционной связи. Они пересекают оси проекций в точках а х и а z соответственно. Линия проекционной связи, соединяющая горизонтальную проекцию точки А с профильной, оказалась «разрезанной» в точке а у.

Две проекции одной и той же точки всегда располагаются на одной линии проекционной связи, перпендикулярной к оси проекций.

Для представления положения точки в пространстве достаточно двух ее проекций и заданного начала координат (точка О) На рис. 4.14, б две проекции точки полностью определяют ее положение в пространстве По этим двум проекциям можно построит профильную проекцию точки А. Поэтому в дальнейшем, если не будет необходимости в профильной проекции, эпюры будут построены на двух плоскостях проекций: V и Н.

Рис. 4.14. Рис. 4.15.

Рассмотрим несколько примеров построения и чтения чертежа точки.

Пример 1. Определение координат точки J заданной на эпюре двумя проекциях (рис. 4.14). Измеряются три отрезка: отрезок Ов Х (координата X), отрезок b Х b (координата Y) и отрезок b Х b" (координата Z). Координаты записывают в следующем п рядке: X, Y и Z, после буквенного обозначения точки, например, В20; 30; 15.

Пример 2 . Построение точки по заданным координатам. Точка С задана координатами С30; 10; 40. На оси Ох (рис. 4.15) находят точку с х, в которой линия проекционной связи пересекает ось проекций. Для этого по оси Ох от начала координат (точка О) откладывают координату X (размер 30) и получают точку с х. Через эту точку перпендикулярно оси Ох проводят линию проекционной связи и от точки вниз откладывают координату У (размер 10), получают точку с - горизонтальную проекцию точки С. Вверх от точки с х по линии проекционной связи откладывают координату Z (размер 40), получают точку с" - фронтальную проекцию точки С.

Пример 3 . Построение профильной проекции точки по заданным проекциям. Заданы проекции точки D - d и d". Через точку О проводят оси проекций Oz, Oy и Оу 1 (рис. 4.16, а). Для построения профильной проекции точки D отточки d" проводят линию проекционной связи, перпендикулярную оси Oz, и продолжают ее вправо за ось Oz. На этой линии будет располагаться профильная проекция точки D. Она будет находиться на таком расстоянии от оси Oz, на каком горизонтальная проекция точки d располагается: от оси Ох, т. е. на расстоянии dd x . Отрезки d z d" и dd x одинаковы, так как определяют одно и то же расстояние - расстояние от точки D до фронтальной плоскости проекций. Это расстояние является координатой У точки D.

Графически отрезок d z d" строят перенесением отрезка dd x с горизонтальной плоскости проекций на профильную. Для этого проводят линию проекционной связи параллельно оси Ох, получают на оси Оу точку d y (рис. 4.16,б). Затем переносят размер отрезка Od y на ось Оу 1 , проведя из точки О дугу радиусом, равным отрезку Od y , до пересечения с осью Оу 1 (рис. 4.16,б), получают точку dy 1 . Эту точку можно построить и как показано на рис. 4.16, в, проведя прямую под углом 45° к оси Оу из точки d y . Из точки d y1 проводят линию проекционной связи параллельно оси Oz и на ней откладывают отрезок, равный отрезку d"d x , получают точку d".

Перенос величины отрезка d x d на профильную плоскость проекций можно осуществить с помощью постоянной прямой чертежа (рис. 4.16, г). В этом случае линию проекционной связи dd y проводят через горизонтальную проекцию точки параллельно оси Оу 1 до пересечения с постоянной прямой, а затем параллельно оси Оу до пересечения с продолжением линии проекционной связи d"d z .

Частные случаи расположения точек относительно плоскостей проекций

Положение точки относительно плоскости проекций определяется соответствующей координатой, т. е. величиной отрезка линии проекционной связи от оси Ох до соответствующей проекции. На рис. 4.17 координата У точки А определяется отрезком аа х - расстояние от точки А до плоскости V. Координата Z точки А определяется отрезком а"а х - расстояние от точки А до плоскости Н. Если одна из координат равна нулю, то точка расположена на плоскости проекций. На рис. 4.17 приведены примеры различного расположения точек относительно плоскостей проекций. Координата Z точки В равна нулю, точка находится в плоскости Н. Ее фронтальная проекция находится на оси Ох и совпадает с точкой b х. Координата У точки С равна нулю, точка располагается на плоскости V, ее горизонтальная проекция с находится на оси Ох и совпадает с точкой с х.

Следовательно, если точка находится на плоскости проекций, то одна из проекций этой точки лежит на оси проекций.

На рис. 4.17 координаты Z и Y точки D равны нулю, следовательно, точка D находится на оси проекций Ох и две ее проекции совпадают.

Проецирование точки на три плоскости проекций координатного угла начинают с получения ее изображения на плоскости H - горизонтальной плоскости проекций. Для этого через точку А (рис. 4.12, а) проводят проецирующий луч перпендикулярно плоскости H.

На рисунке перпендикуляр к плоскости Н параллелен оси Oz. Точку пересечения луча с плоскостью Н (точку а) выбирают произ­вольно. Отрезок Аа определяет, на каком расстоянии находится точка А от плоскости Н, указывая тем самым однозначно положение точки А на рисунке по отношению к плоскостям проекций. Точка а является прямоугольной проекцией точки А на плоскость Н и называется горизонтальной проекцией точки А (рис. 4.12, а).

Для получения изображения точки А на плоскости V (рис. 4.12,б) через точку А проводят проецирующий луч перпендикулярно фронтальной плоскости проекций V. На рисунке перпендикуляр к плоскости V параллелен оси Оу. На плоскости Н расстояние от точки А до плоскости V изобразится отрезком аа х, параллельным оси Оу и перпендикулярным оси Ох. Если представить себе, что проецирующий луч и его изображение проводят одновременно в направлении плоскости V, то когда изображение луча пересечет ось Ох в точке а х, луч пересечет плоскость V в точке а". Проведя из точки а х в плоскости V перпендикуляр к оси Ох, который является изображением проецирующего луча Аа на плоскости V, в пересечении с проецирующим лучом получают точку а". Точка а" является фронтальной проекцией точки А, т. е. ее изображением на плоскости V.

Изображение точки А на профильной плоскости проекций (рис. 4.12, в) строят с помощью проецирующего луча, перпендикулярного плоскости W. На рисунке перпендикуляр к плоскости W параллелен оси Ох. Проецирующий луч от точки А до плоскости W на плоскости Н изобразится отрезком аа у, параллельным оси Ох и перпендикулярным оси Оу. Из точки Оу параллельно оси Oz и перпендикулярно оси Оу строят изображение проецирующего луча аА и в пересечении с проецирующим лучом получают точку а". Точка а" является профильной проекцией точки А, т. е. изображением точки А на плоскости W.

Точку а" можно построить, проведя от точки а" отрезок а"а z (изображение проецирующего луча Аа" на плоскости V) параллельно оси Ох, а от точки а z - отрезок а"а z параллельно оси Оу до пересечения с проецирующим лучом.

Получив три проекции точки А на плоскостях проекций, координатный угол развертывают в одну плоскость, как показано на рис. 4.11,б, вместе с проекциями точки А и проецирующих лучей, а точку А и проецирующие лучи Аа, Аа" и Аа" убирают. Края совмещенных плоскостей проекций не проводят, а проводят только оси проекций Oz, Оу и Ох, Оу 1 (рис. 4.13).

Анализ ортогонального чертежа точки показывает, что три расстояния - Аа", Аа и Аа" (рис. 4.12, в), характеризующие положение точки А в пространстве, можно определить, отбросив сам объект проецирования - точку А, на развернутом в одну плоскость координатном угле (рис. 4.13). Отрезки а"а z , аа y и Оа х равны Аа" как противоположные стороны соответствующих прямоугольников (рис. 4.12,в и 4.13). Они определяют расстояние, на котором находится точка А от профильной плоскости проекций. Отрезки а"а х, а"а у1 и Оа у равны отрезку Аа, определяют расстояние от точки А до горизонтальной плоскости проекций, отрезки аа х, а"а z и Оа y 1 равны отрезку Аа", определяющему расстояние от точки А до фронтальной плоскости проекций.

Отрезки Оа х, Оа у и Оа z , расположенные на осях проекций, являются графическим выражением размеров координат X, Y и Z точки А. Координаты точки обозначают с индексом соответствующей буквы. Измерив величину этих отрезков, можно определить положение точки в пространстве, т. е. задать координаты точки.

На эпюре отрезки а"а х и аа х располагаются как одна линия, перпендикулярная к оси Ох а отрезки а"а z и a"a z - к оси Оz. Эти лини называются линиями проекционной связи. Они пересекают оси проекций в точках а х и а z соответственно. Линия проекционной связи, соединяющая горизонтальную проекцию точки А с профильной, оказалась «разрезанной» в точке а у.

Две проекции одной и той же точки всегда располагаются на одной линии проекционной связи, перпендикулярной к оси проекций.

Для представления положения точки в пространстве достаточно двух ее проекций и заданного начала координат (точка О) На рис. 4.14, б две проекции точки полностью определяют ее положение в пространстве По этим двум проекциям можно построит профильную проекцию точки А. Поэтому в дальнейшем, если не будет необходимости в профильной проекции, эпюры будут построены на двух плоскостях проекций: V и Н.

Рис. 4.14. Рис. 4.15.

Рассмотрим несколько примеров построения и чтения чертежа точки.

Пример 1. Определение координат точки J заданной на эпюре двумя проекциях (рис. 4.14). Измеряются три отрезка: отрезок Ов Х (координата X), отрезок b Х b (координата Y) и отрезок b Х b" (координата Z). Координаты записывают в следующем п рядке: X, Y и Z, после буквенного обозначения точки, например, В20; 30; 15.

Пример 2 . Построение точки по заданным координатам. Точка С задана координатами С30; 10; 40. На оси Ох (рис. 4.15) находят точку с х, в которой линия проекционной связи пересекает ось проекций. Для этого по оси Ох от начала координат (точка О) откладывают координату X (размер 30) и получают точку с х. Через эту точку перпендикулярно оси Ох проводят линию проекционной связи и от точки вниз откладывают координату У (размер 10), получают точку с - горизонтальную проекцию точки С. Вверх от точки с х по линии проекционной связи откладывают координату Z (размер 40), получают точку с" - фронтальную проекцию точки С.

Пример 3 . Построение профильной проекции точки по заданным проекциям. Заданы проекции точки D - d и d". Через точку О проводят оси проекций Oz, Oy и Оу 1 (рис. 4.16, а). Для построения профильной проекции точки D отточки d" проводят линию проекционной связи, перпендикулярную оси Oz, и продолжают ее вправо за ось Oz. На этой линии будет располагаться профильная проекция точки D. Она будет находиться на таком расстоянии от оси Oz, на каком горизонтальная проекция точки d располагается: от оси Ох, т. е. на расстоянии dd x . Отрезки d z d" и dd x одинаковы, так как определяют одно и то же расстояние - расстояние от точки D до фронтальной плоскости проекций. Это расстояние является координатой У точки D.

Графически отрезок d z d" строят перенесением отрезка dd x с горизонтальной плоскости проекций на профильную. Для этого проводят линию проекционной связи параллельно оси Ох, получают на оси Оу точку d y (рис. 4.16,б). Затем переносят размер отрезка Od y на ось Оу 1 , проведя из точки О дугу радиусом, равным отрезку Od y , до пересечения с осью Оу 1 (рис. 4.16,б), получают точку dy 1 . Эту точку можно построить и как показано на рис. 4.16, в, проведя прямую под углом 45° к оси Оу из точки d y . Из точки d y1 проводят линию проекционной связи параллельно оси Oz и на ней откладывают отрезок, равный отрезку d"d x , получают точку d".

Перенос величины отрезка d x d на профильную плоскость проекций можно осуществить с помощью постоянной прямой чертежа (рис. 4.16, г). В этом случае линию проекционной связи dd y проводят через горизонтальную проекцию точки параллельно оси Оу 1 до пересечения с постоянной прямой, а затем параллельно оси Оу до пересечения с продолжением линии проекционной связи d"d z .

Частные случаи расположения точек относительно плоскостей проекций

Положение точки относительно плоскости проекций определяется соответствующей координатой, т. е. величиной отрезка линии проекционной связи от оси Ох до соответствующей проекции. На рис. 4.17 координата У точки А определяется отрезком аа х - расстояние от точки А до плоскости V. Координата Z точки А определяется отрезком а"а х - расстояние от точки А до плоскости Н. Если одна из координат равна нулю, то точка расположена на плоскости проекций. На рис. 4.17 приведены примеры различного расположения точек относительно плоскостей проекций. Координата Z точки В равна нулю, точка находится в плоскости Н. Ее фронтальная проекция находится на оси Ох и совпадает с точкой b х. Координата У точки С равна нулю, точка располагается на плоскости V, ее горизонтальная проекция с находится на оси Ох и совпадает с точкой с х.

Следовательно, если точка находится на плоскости проекций, то одна из проекций этой точки лежит на оси проекций.

На рис. 4.17 координаты Z и Y точки D равны нулю, следовательно, точка D находится на оси проекций Ох и две ее проекции совпадают.