Большая Энциклопедия Нефти и Газа. Прочность сталь

Предел прочности - это то же, что и временное сопротивление материала. Но несмотря на то, что правильнее использовать термин временное сопротивление , понятие предел прочности лучше прижилось в технической разговорной речи. В то же время в нормативной документации, стандартах применяют термин "временное сопротивление".

ИЦМ(www.сайт)

Прочность - это сопротивление материала деформации и разрушению, одно из основных механических свойств . Другими словами, прочность - это свойство материалов, не разрушаясь, воспринимать те или иные воздействия (нагрузки, температурные, магнитные и другие поля).

К характеристикам прочности при растяжении относятся модуль нормальной упругости, предел пропорциональности, предел упругости, предел текучести и временное сопротивление (предел прочности).

Предел прочности - это максимальное механическое напряжение, выше которого происходит разрушение материала, подвергаемого деформации; предел прочности при растяжении обозначается σ В и измеряется в килограммах силы на квадратный сантиметр (кгс/см 2), а также указывается в мегапаскалях (МПа).

Различают:

  • предел прочности при растяжении,
  • предел прочности при сжатии,
  • предел прочности при изгибе,
  • предел прочности при кручении.

Предел кратковременной прочности (МПа) определяется с помощью испытаний на растяжение, деформацию проводят до разрушения. С помощью испытаний на растяжение определяют временное сопротивление, удлинение, предел упругости и др.. Испытания на длительную прочность предназначены главным образом для оценки возможности использования материалов при высоких температурах (длительная прочность, ползучесть); в результате определяется σ B/Zeit - предел ограниченной длительной прочности на заданный срок службы.

ИЦМ(www.сайт)

Прочность металлов

Физику прочности основал Галилей: обобщая свои опыты, он открыл (1638 г.), что при растяжении или сжатии нагрузка разрушения P для данного материала зависит только от площади поперечного сечения F . Так появилась новая физическая величина - напряжение σ=P /F - и физическая постоянная материала: напряжение разрушения .

Физика разрушения как фундаментальная наука о прочности металлов возникла в конце 40-х годов XX века ; это было продиктовано острой необходимостью разработки научно обоснованных мер для предотвращения участившихся катастрофических разрушений машин и сооружений. Раньше в области прочности и разрушения изделий учитывалась только классическая механика, основанная на постулатах однородного упруго-пластического твёрдого тела, без учёта внутренней структуры металла. Физика разрушения учитывает также атомно-кристаллическое строение решётки металлов, наличие дефектов металлической решётки и законы взаимодействия этих дефектов с элементами внутренней структуры металла: границами зёрен, второй фазой, неметаллическими включениями и др.

Большое влияние на прочность материала оказывает наличие ПАВ в окружающей среде, способных сильно адсорбироваться (влага, примеси); происходит уменьшение предела прочности.

К повышению прочности металла приводят целенаправленние изменения металлической структуры, в том числе - модифицирование сплава .

Учебный фильм о прочности металлов (СССР, год выпуска: ~1980):

Предел прочности металла

Предел прочности меди . При комнатной температуре предел прочности отожжённой технической меди σ В =23 кгс/мм 2 . С ростом температуры испытания предел прочности меди уменьшается. Легирующие элементы и примеси различным образом влияют на предел прочности меди, как увеличивая, так и уменьшая его.

Предел прочности алюминия . Отожжённый алюминий технической чистоты при комнатной температуре имеет предел прочности σ В =8 кгс/мм 2 . С повышением чистоты прочность алюминия уменьшается, а пластичность увеличивается. Например, литой в землю алюминий чистотой 99,996% имеет предел прочности 5 кгс/мм 2 . Предел прочности алюминия уменьшается естественным образом при повышении температуры испытания. При понижении температуры от +27 до -269°C временное сопротивление алюминия повышается - в 4 раза у технического алюминия и в 7 раз у высокочистого алюминия. Легирование повышает прочность алюминия.

ИЦМ(www.сайт)

Предел прочности сталей

В качестве примера представлены значения предела прочности некоторых сталей. Эти значения взяты из государственных стандартов и являются рекомендуемыми (требуемыми). Реальные значения предела прочности сталей, равно как и чугунов, а также других металлических сплавов зависят от множества факторов и должны определяться при необходимости в каждом конкретном случае.

Для стальных отливок, изготовленных из нелегированных конструкционных сталей, предусмотренных стандартом (стальное литьё, ГОСТ 977-88), предел прочности стали при растяжении составляет примерно 40-60 кг/мм 2 или 392-569 МПа (нормализация или нормализация с отпуском), категория прочности К20-К30. Для тех же сталей после закалки и отпуска регламентируемые категории прочности КТ30-КТ40, значения временного сопротивления уже не менее 491-736 МПа.

Для конструкционных углеродистых качественных сталей (ГОСТ 1050-88, прокат размером до 80 мм, после нормализации) :

  • Предел прочности стали 10 : сталь 10 имеет предел кратковременной прочности 330 МПа.
  • Предел прочности стали 20 : сталь 20 имеет предел кратковременной прочности 410 МПа.
  • Предел прочности стали 45 : сталь 45 имеет предел кратковременной прочности 600 МПа.

Категории прочности сталей

Категории прочности сталей (ГОСТ 977-88) условно обозначаются индексами «К» и «КТ», после индекса следует число, которое представляет собой значение требуемого предела текучести . Индекс «К» присваивается сталям в отожженном, нормализованном или отпущенном состоянии. Индекс «КТ» присваивается сталям после закалки и отпуска.

Предел прочности чугуна

Метод определения предела прочности чугуна регламентируется стандартом ГОСТ 27208-87 (Отливки из чугуна. Испытания на растяжение, определение временного сопротивления).

Предел прочности серого чугуна . Серый чугун (ГОСТ 1412-85) маркируется буквами СЧ, после букв следуют цифры, которые указывают минимальную величину предела прочности чугуна - временного сопротивления при растяжении (МПа*10 -1). ГОСТ 1412-85 распространяется на чугуны с пластинчатым графитом для отливок марок СЧ10-СЧ35; отсюда видно, минимальные значения предела прочности серого чугуна при растяжении в литом состоянии или после термической обработки варьируются от 10 до 35 кгс/мм 2 (или от 100 до 350 МПа). Превышение минимального значения предела прочности серого чугуна допускается не более, чем на 100 МПа, если иное не оговорено отдельно.

Предел прочности высокопрочного чугуна . Маркировка высокопрочного чугуна также включает в себя цифры, обозначающие временное сопротивление при растяжении чугуна (предел прочности), ГОСТ 7293-85. Предел прочности при растяжении высокопрочного чугуна составляет 35-100 кг/мм 2 (или от 350 до 1000 МПа).

Из вышеизложенного видно, что чугун с шаровидным графитом может успешно конкурировать со сталью.

Подготовлено: Корниенко А.Э. (ИЦМ)

Лит.:

  1. Циммерман Р., Гюнтер К. Металлургия и материаловедение. Справ. изд. Пер. с нем. – М.: Металлургия, 1982. – 480 с.
  2. Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. - ISBN 5-217-00241-1
  3. Жуковец И.И. Механические испытания металлов: Учеб. для сред. ПТУ. - 2-е изд., перераб. и доп. – М.: Высш.шк., 1986. - 199 с.: ил. - (Профтехобразование). - ББК 34.2/ Ж 86/ УДЖ 620.1
  4. Штремель М.А. Прочность сплавов. Часть II. Деформация: Учебник для вузов. - М.:*МИСИС*, 1997. - 527 с.
  5. Мешков Ю.Я. Физика разрушения стали и актуальные вопросы конструкционной прочности // Структура реальных металлов: Сб. науч. тр. - Киев: Наук. думка, 1988. - С.235-254.
  6. Френкель Я.И. Введение в теорию металлов. Издание четвёртое. - Л.: "Наука", Ленингр. отд., 1972. 424 с.
  7. Получение и свойства чугуна с шаровидным графитом. Под редакцией Гиршовича Н.Г. - М.,Л.: Ленинградское отделение Машгиза, 1962, - 351 с.
  8. Бобылев А.В. Механические и технологические свойства металлов. Справочник. - М.: Металлургия, 1980. 296 с.

Предел прочности

Определённая пороговая величина для конкретного материала, превышение которой приведёт к разрушению объекта под действием механического напряжения. Основные виды пределов прочности: статический, динамический, на сжатие и на растяжение. Например, предел прочности на растяжение - это граничное значение постоянного (статический предел) или переменного (динамический предел) механического напряжения, превышение которого разорвет (или неприемлемо деформирует) изделие. Единица измерения - Паскаль [Па], Н/мм ² = [МПа].

Предел текучести (σ т)

Величина механического напряжения, при которой деформация продолжает увеличиваться без увеличения нагрузки; служит для расчётов допустимых напряжений пластичных материалов.

После перехода предела текучести в структуре металла наблюдаются необратимые изменения: кристаллическая решетка перестраивается, появляются значительные пластические деформации. Вместе с тем происходит самоупрочнение металла и после площадки текучести деформация возрастает при увеличении растягивающей силы.

Нередко этот параметр определяют как «напряжение, при котором начинает развиваться пластическая деформация» , таким образом, отождествляя пределы текучести и упругости. Однако следует понимать, что это два разных параметра. Значения предела текучести превышают предел упругости ориентировочно на 5%.

Предел выносливости или предел усталости (σ R)

Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7). Коэффициент R (σ R) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ -1 , а в случае пульсационных - как σ 0 .

Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.

Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:

Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:

Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10-20% меньше, чем при изгибе.

Предел пропорциональности (σ)

Максимальная величина напряжения для конкретного материала, при которой ещё действует закон Гука, т.е. деформация тела прямо пропорционально зависит от прикладываемой нагрузки (силы). Обратите внимание, что для множества материалов достижение (но не превышение!) предела упругости приводит к обратимым (упругим) деформациям, которые, впрочем, уже не прямо пропорциональны напряжениям. При этом такие деформации могут несколько «запаздывать» относительно роста или снижения нагрузки.

Диаграмма деформации металлического образца при растяжении в координатах удлинение (Є) - напряжение (σ).

1:Предел абсолютной упругости.

2:Предел пропорциональности.

3:Предел упругости.

Классификация стали

Сталь - деформируемый (ковкий) сплав железа с углеродом (до 2%) и другими элементами. Это важнейший материал, который применяется в большинстве отраслей промышленности. Существует большое число марок сталей, различающихся по структуре, химическому составу, механическим и физическим свойствам. Посмотреть основные виды продукции металлопроката и ознакомиться с ценами можно .

Основные характеристики стали:

  • плотность
  • модуль упругости и модуль сдвига
  • коэффициент линейного расширения
  • и другие
По химическому составу стали делятся на углеродистые и легированные . Углеродистая сталь наряду с железом и углеродом содержит марганец (0,1-1,0%), кремний (до 0,4%).Сталь содержит также вредные примеси (фосфор, серу, газы - несвязанный азот и кислород). Фосфор при низких температурах придает ей хрупкость (хладноломкость), а при нагревании уменьшает пластичность. Сера приводит к образованию мелких трещин при высоких температурах (красноломкость).Чтобы придать стали какие-либо специальные свойста (коррозионной устойчивости, электрические, механические, магнитные, и т.д.), в нее вводят легирующие элементы. Обычно это металлы: алюминий, никель, хром, молибден, и др. Такие стали называют легированными.Свойства стали можно изменять путем применения различных видов обработки: термической (закалка, отжиг), химико-термической (цементизация, азотирование), термо-механической (прокатка, ковка). При обработке для получения необходимой структуры используют свойство полиморфизма, присущее стали так же, как и их основе - железу. Полиморфизм - способность кристаллической решетки менять свое строение при нагреве и охлаждении. Взаимодействие углерода с двумя модификациями (видоизменениями) железа - α и γ - приводит к образованию твердых растворов. Избыточный углерод, не растворяющийся в α-железе, образует с ним химическое соединение - цементит Fe 3 C. При закалке стали образуется метастабильная фаза - мартенсит - пересыщенный твердый раствор углерода в α-железе. Сталь при этом теряет пластичность и приобретает высокую твердость. Сочетая закалку с последующим нагревом (отпуском), можно добиться оптимального сочетания твердости и пластичности.По назначению стали делятся на конструкционные, инструментальные и стали с особыми свойствами.Конструкционные стали применяют для изготовления строительных конструкций, деталей машин и механизмов, судовых и вагонных корпусов, паровых котлов. Инструментальные стали служат для изготовления резцов, штампов и других режущих, ударно-штамповых и измерительных инструментов. К сталям с особыми свойствами относятся электротехнические, нержавеющие, кислотостойкие и др.По способу изготовления сталь бывает мартеновской и кислородно-конверторной (кипящей, спокойной и полуспокойной). Кипящую сталь сразу разливают из ковша в изложницы, она содержит значительное количество растворенных газов. Спокойная сталь - это сталь, выдержанная некоторое время в ковшах вместе с раскислителями (кремний, марганец, алюминий), которые соединяясь с растворенным кислородом, превращаются в оксиды и выплывают на поверхность массы стали. Такая сталь имеет лучший состав и более однородную структуру, но дороже кипящей на 10-15%. Полуспокойная сталь занимает промежуточное положение между спокойной и кипящей.В современной металлургии сталь выплавляют в основном из чугуна и стального лома. Основные виды агрегатов для ее выплавки: мартеновская печь, кислородный конвертер, электропечи. Наиболее прогрессивным в наши дни считается кислородно-конвертерный способ производства стали. В то же время развиваются новые, перспективные способы ее получения: прямое восстановление стали из руды, электролиз, электрошлаковый переплав и т.д. При выплавке стали в сталеплавильную печь загружают чугун, добавляя к нему металлические отходы и железный лом, содержащий оксиды железа, которые служат источником кислорода. Выплавку ведут при возможно более высоких температурах, чтобы ускорить расплавление твердых исходных материалов. При этом железо, содержащееся в чугуне, частично окисляется:2Fe + O 2 = 2FeO + QОбразующийся оксид железа (II) FeO, перемешиваясь с расплавом, окисляет, кремний, марганец, фосфор и углерод, входящие в состав чугуна:Si +2FeO = SiO 2 + 2 Fe + QMn + FeO = MnO + Fe + Q2P + 5FeO = P 2 O 5 + 5Fe + QC + FeO = CO + Fe - QЧтобы довести до конца окислительные реакции в расплаве, добавляют так называемые раскислители - ферромарганец, ферросилиций, алюминий.Марки стали

Марки стали углеродистой

Углеродистая сталь обыкновенного качества в зависимости от назначения подразделяется на три группы:

  • группа А - поставляемая по механическим свойствам;
  • группа Б - поставляемая по химическому составу;
  • группа В - поставляемая по механическим свойствам и химическому составу.
В зависимости от нормируемых показателей стали группы А подразделяются на три категории: А1, А2, А3; стали группы Б на две категории: Б1 и Б2; стали группы В на шесть категорий: В1, В2, В3, В4, В5, В6. Для стали группы А установлены марки Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст6. Для стали группы Б марки БСт0, БСт1, БСт2, БСт3, БСт4, БСт5, БСт6. Сталь группы В изготовляется мартеновским и конвертерным способом. Для нее установлены марки ВСт2, ВСт3, ВСт4, ВСт5.Буквы Ст обозначают сталь, цифры от 0 до 6 - условный номер марки стали в зависимости от химического состава и механических свойств. С повышением номера стали возрастают пределы прочности (σ в) и текучести (σ т) и уменьшается относительное удлинение (δ 5).Марку стали Ст0 присваивают стали, отбракованной по каким-либо признакам. Эту сталь используют в неответственных конструкциях.В ответственных конструкциях применяют сталь Ст3сп.Буквы Б и В указывают на группу стали, группа А в обозначении не указывается.Если сталь относится к кипящей, ставится индекс "кп", если к полустойкой - "пс", к спокойной - "сп".Качественные углеродистые конструкционные стали применяют для изготовления ответственных сварных конструкций. Качественные стали по ГОСТ 1050-74 маркируются двузначными цифрами, обзначающими среднее содержание углерода в сотых долях процента. Например, марки 10, 15, 20 и т.д. означают, что сталь содержит в среднем 0,10%, 0,15%, 0,2% углерода.Сталь по ГОСТ 1050-74 изготовляют двух групп: группа I - с нормальным содержанием марганца (0,25-0,8%), группа II - с повышенным содержанием марганца (0,7-1,2%). При повышенном содержании марганца в обозначение дополнительно вводится буква Г, указывающая, что сталь имеет повышенное содержание марганца.Марки стали легированной Легированные стали кроме обычных примесей содержат элементы, специально вводимые в определенных количествах для обеспечения требуемых свойств. Эти элементы называются лигирующими. Лигированные стали подразделяются в зависимости от содержания лигирующих элементов на низколегированные (2,5% легирующих элементов), среднелегированные (от 2,5 до 10% и высоколегированные (свыше 10%).Лигирующие добавки повышают прочность, коррозийную стойкость стали, снижают опасность хрупкого разрушения. В качестве легирующих добавок применяют хром, никель, медь, азот (в химически связанном состоянии), ванадий и др.Легированные стали маркируются цифрами и буквами, указывающими примерный состав стали. Буква показывает, какой легирующий элемент входит в состав стали (Г - марганец, С - кремний, Х -хром, Н - никель, Д - медь, А - азот, Ф - ванадий), а стоящие за ней цифры - среднее содержание элемента в процентах. Если элемента содержится менее 1%, то цифры за буквой не ставятся. Первые две цифры указывают среднее содержание углерода в сотых долях процента.Нержавеющая сталь. Свойства. Химический состав Нержавеющая сталь - легированная сталь, устойчивая к коррозии на воздухе, в воде, а также в некоторых агрессивных средах. Наиболее распространены хромоникелевая (18% Cr b 9%Ni) и хромистая (13-27% Cr) нержавеющая сталь, часто с добавлением Mn, Ti и других элементов.Добавка хрома повышает стойкость стали к окислению и коррозии. Такая сталь сохраняет прочность при высоких температурах. Хром входит также в состав износостойких сталей, из которых делают инструменты, шарикоподшипники, пружины.
Примерный химический состав нержавеющей стали (в %) Дамасская и булатная сталь. Дамасская сталь - первоначально то же, что и булат; позднее - сталь, полученная кузнечной сваркой сплетенных в жгут стальных полос или проволоки с различным содержанием углерода. Название получила от города Дамасск (Сирия), где производство этой стали было развито в средние века и, отчасти, в новое время.Булатная сталь (булат) - литая углеродистая сталь со своеобразной структурой и узорчатой проверхностью, обладающая высокой твердостью и упругостью. Из булатной стали изготовляли холодное оружие исключительной стойкости и остроты. Булатная сталь упоминается еще Аристотелем. Секрет изготовления булатной стали, утерянный в средние века, раскрыл в XIX веке П.П.Аносов. Опираясь на науку, он определил роль углерода как элемента, влияющего на качество стали, а также изучил значение ряда других элементов. Выяснив важнейшие условия образования лучшего сорта углеродистой стали - булата, Аносов разработал технологию его выплавки и обработки (Аносов П.П. О булатах. Горный журнал, 1841, № 2, с.157-318).Плотность стали, удельный вес стали и другие характеристики стали Плотность стали - (7,7-7,9)*10 3 кг /м 3 ;Удельный вес стали - (7,7-7,9) г /cм 3 ;Удельная теплоемкость стали при 20°C - 0,11 кал/град;Температура плавления стали - 1300-1400°C ;Удельная теплоемкость плавления стали - 49 кал/град;Коэффициент теплопроводности стали - 39ккал/м*час*град;Коэффициент линейного расширения стали (при температуре около 20°C) : сталь 3 (марка 20) - 11,9 (1/град); сталь нержавеющая - 11,0 (1/град).Предел прочности стали при растяжении : сталь для конструкций - 38-42 (кГ/мм 2); сталь кремнехромомарганцовистая - 155 (кГ/мм 2); сталь машиноподелочная (углеродистая) - 32-80 (кГ/мм 2); сталь рельсовая - 70-80 (кГ/мм 2);Плотность стали, удельный вес сталиПлотность стали - (7,7-7,9)*10 3 кг /м 3 (приблизительно 7,8*10 3 кг /м 3);Плотность вещества (в нашем случае стали) есть отношение массы тела к его объему (другими словами плотность равна массе единицы объема данного вещества):d=m/V, где m и V - масса и объем тела.За единицу плотности принимают плотность такого вещества, единица объема которого имеет массу, равную единице:
в системе СИ это 1 кг /м 3 , в системе СГС - 1 г /см 3 , в системе МКСС - 1 тем /м 3 . Эти единицы связаны между собой соотношением:1 кг /м 3 =0,001 г /см 3 =0,102 тем /м 3 .Удельный вес стали - (7,7-7,9) г /cм 3 (приблизительно 7,8 г /cм 3);Удельный вес вещества (в нашем случае стали) есть отношение силы тяжести Р однородного тела из данного вещества (в нашем случае стали) к объему тела. Если обозначить удельный вес буквой γ , то:γ=P/V .С другой стороны, удельный вес можно рассматривать, как силу тяжести единицы объема данного вещества (в нашем случае стали). Удельный вес и плотность связаны таким же соотношением, как вес и масса тела:γ/d=P/m=g.За единицу удельного веса принимают: в системе СИ - 1 н /м 3 , в системе СГС - 1 дн /см 3 , в системе МКСС - 1 кГ/м 3 . Эти единицы связаны между собой соотношением:1 н /м 3 =0,0001 дн /см 3 =0,102 кГ/м 3 .Иногда используют внесистемную единицу 1 Г/см 3 .Так как масса вещества, выраженная в г , равна его весу, выраженному в Г, то удельный вес вещества (в нашем случае стали), выраженный в этих единицах, численно равен плотности этого вещества, выраженной в системе СГС.Аналогичное численное равенство существует и между плотностью в системе СИ и удельным весом в системе МКСС.

Плотность стали
Модули упругости стали и коэффициент Пуассона
Величины допускаемых напряжений стали (кГ/мм 2) Свойства некоторых электротехнических сталей Нормируемый химический состав углеродистых сталей обыкновенного качества по ГОСТ 380-71
Марка стали Содержание элементов, %
C Mn Si P S
не более
Ст0 Не более 0,23 - - 0,07 0,06
Ст2пс
Ст2сп
0,09...0,15 0,25...0,50 0,05...0,07
0,12...0,30
0,04 0,05
Ст3кп
Ст3пс
Ст3сп
Ст3Гпс
0,14...0,22 0,30...0,60
0,40...0,65
0,40...0,65
0,80...1,10
не более 0,07
0,05...0,17
0,12...0,30
не более 0,15
0,04 0,05
Ст4кп
Ст4пс
Ст4сп
0,18...0,27 0,40...0,70 не более 0,07
0,05...0,17
0,12...0,30
0,04 0,05
Ст5пс
Ст5сп
0,28...0,37 0,50...0,80 0,05...0,17
0,12...0,35
0,04 0,05
Ст5Гпс 0,22...0,30 0,80...1,20 не более 0,15 0,04 0,05
Нормируемые показатели механических свойств углеродистых сталей обыкновенного качества по ГОСТ 380-71
Марка стали Предел прочности
(временное сопротивление)
σ в, МПа
Предел текучести σ т, МПа Относительное удлинение коротких образцов δ 5 , % Изгиб на 180° при диаметре оправки d
толщина образца s, мм
до 20 20...40 40...100 до 20 20...40 40...100 до 20
Ст0 310 - - - 23 22 20 d=2s
ВСт2пс
ВСт2сп
340...440 230 220 210 32 31 29 d=0 (без оправки)
ВСт3кп
ВСт3пс
ВСт3сп
ВСт3Гпс
370...470
380...490
380...500
240
250
250
230
240
240
220
230
230
27
26
26
26
25
25
24
23
23
d=0,5s
ВСт4кп
ВСт4пс
ВСт4Гсп
410...520
420...540
260
270
250
260
240
250
25
24
24
23
22
21
d=2s
ВСт5пс
ВСт5сп
ВСт5Гпс
500...640
460...600
290
290
280
280
270
270
20
20
19
19
17
17
d=3s
Примечания: 1. Для листовой и фасонной стали толщиной s>=20 мм значение предела текучести допускается на 10 МПа ниже по сравнению с указанным. 2. При s<20 мм диаметр оправки увеличивается на толщину образца.

Металлам присущи высокая пластичность, тепло- и электропро­водность. Они имеют характерный металлический блеск.

Свойствами металлов обладают около 80 элементов периодиче­ской системы Д.И. Менделеева. Для металлов, а также для метал­лических сплавов, особенно конструкционных, большое значение имеют механические свойства, основными из которых являются прочность, пластичность, твердость и ударная вязкость.

Под действием внешней нагрузки в твердом теле возникают на­пряжение и деформация. отнесенная к первоначальной площади поперечного сече­ния образца.

Деформация – это изменение формы и размеров твердого тела под действием внешних сил или в результате физических процессов, возникающих в теле при фазовых превращениях, усадке и т.п. Де­формация может быть упругая (исчезает после снятия нагрузки) и пластическая (сохраняется после снятия нагрузки). При все возрас­тающей нагрузке упругая деформация, как правило, переходит в пла­стическую, и далее образец разрушается.

В зависимости от способа приложения нагрузки методы испытания механических свойств ме­таллов, сплавов и других материалов делятся на статические, динамические и знакопеременные.

Прочность – способность металлов оказывать сопротивление де­формации или разрушению статическим, динамическим или знако­переменным нагрузкам. Прочность металлов при статических нагрузках испытывают на растяжение, сжатие, изгиб и кручение. Испытание на разрыв является обязательным. Прочность при динамических нагрузках оценивают удельной ударной вязкостью, а при знакопеременных нагрузках – усталостной прочностью.

Для определения прочности, упругости и пластичности металлы в виде образцов круглой или плоской формы испытывают на статическое растяжение. Испытания проводят на разрывных машинах. В результате испытаний получают диаграмму растяжения (рис. 3.1). По оси абсцисс этой диаграммы откладывают значения деформации, а по оси ординат – значения напряжения, приложенного к образцу.

Из графика видно, что сколь бы ни было мало приложенное напряжение, оно вызывает деформацию, причем начальные деформации являются всегда упругими и величина их находится в прямой зависимости от напряжения. На кривой, приведенной на диаграмме (рис. 3.1), упругая деформация характеризуется линией ОА и ее продолжением.

Рис. 3.1. Кривая деформации

Выше точки А нарушается пропорциональность между напряжением и деформацией. Напряжение вызывает уже не только упругую, но и остаточную, пластическую деформацию. Величина ее равна горизонтальному отрезку от штриховой линии до сплошной кривой.

При упругом деформировании под действием внешней силы изменяется расстояние между атомами в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места и деформация исчезает.

Пластическое деформирование представляет собой совершенно другой, значительно более сложный процесс. При пластическом деформировании одна часть кристалла перемещается по отношению к другой. Если нагрузку снять, то перемещенная часть кристалла не возвратится на старое место; деформация сохранится. Эти сдвиги обнаруживаются при микроструктурном исследовании. Кроме того, пластическое деформирование сопровождается дроблением блоков мозаики внутри зерен, а при значительных степенях деформации наблюдается также заметное изменение форм зерен и их расположения в пространстве, причем между зернами (иногда и внутри зерен) возникают пустоты (поры).

Представленная зависимость ОАВ (см. рис. 3.1) между приложенным извне напряжением (σ ) и вызванной им относительной деформацией (ε ) характеризует механические свойства металлов.

· наклон прямой ОА показывает жесткость металла , или характеристику того, как нагрузка, приложенная извне, изменяет межатомные расстояния, что в первом приближении характеризует силы межатомного притяжения;

· тангенс угла наклона прямой ОА пропорционален модулю упругости (Е ), который численно равен частному от деления напряжения на относительную упругую деформацию:

· напряжение, которое называется пределом пропорциональности (σ пц), соответствует моменту появления пластической деформации. Чем точнее метод измерения деформации, тем ниже лежит точка А ;

· в технических измерениях принята характеристика, именуемая пределом текучести (σ 0,2). Это напряжение, вызывающее остаточную деформацию, равную 0,2 % от длины или другого размера образца, изделия;

· максимальное напряжение (σ в) соответствует максимальному напряжению, достигнутому при растяжении, и называется временным сопротивлением или пределом прочности .

Еще одной характеристикой материала является величина пластической деформации, предшествующая разрушению и определяемая как относительное изменение длины (или поперечного сечения) – так называемое относительное удлинение (δ ) или относительное сужение (ψ ), они характеризуют пластичность металла. Площадь под кривой ОАВ пропорциональна работе, которую надо затратить, чтобы разрушить металл. Этот показатель, определяемый различными способами (главным образом путем удара по надрезанному образцу), характеризует вязкость металла.

При растяжении образца до разрушения фиксируются графически (рис. 3.2) зависимости между приложенным усилием и удлинением образца, в результате этого получают так называемые диаграммы деформации.

Рис. 3.2. Диаграмма «усилие (напряжение) – удлинение»

Деформация образца при нагружении сплава сначала является макроупругой, а затем постепенно и в разных зернах при неодинаковой нагрузке переходит в пластическую, происходящую путем сдвигов по дислокационному механизму. Накопление дислокаций в результате деформации ведет к упрочнению металла, но при значительной их плотности, особенно в отдельных участках, возникают очаги разрушения, приводящие, в конечном счете, к полному разрушению образца в целом.

Прочность при испытании на растяжение оценивают следующими характеристиками:

1) пределом прочности на разрыв;

2) пределом пропорциональности;

3) пределом текучести;

4) пределом упругости;

5) модулем упругости;

6) пределом текучести;

7) относительным удлинением;

8) относительным равномерным удлинением;

9) относительным сужением после разрыва.

Предел прочности на разрыв (предел прочности или временное сопротивление разрыву) σ в, – это напряжение, отвечающее наибольшей нагрузке Р В предшествующей разрушению образца:

σ в = Р в /F 0 ,

Эта характеристика является обязательной для металлов.

Предел пропорциональности (σ пц) – это условное напряжение Р пц, при котором начинается отклонение от пропорциональной зависимости мости между деформацией и нагрузкой. Он равен:

σ пц = Р пц /F 0 .

Значения σ пц измеряют в кгс/мм 2 или в МПа.

Предел текучести (σ т) – это напряжение (Р т) при котором обра­зец деформируется (течет) без заметного увеличения нагрузки. Вычисляется по формуле:

σ т = Р т /F 0 .

Предел упругости (σ 0,05) – напряжение, при котором остаточное удлинение достигает 0,05 % длины участка рабочей части образца, равного базе тензометра. Предел упругости σ 0,05 вычисляют по формуле:

σ 0,05 = Р 0,05 /F 0 .

Модуль упругости (Е )отношение приращения напряжения к соответствующему приращению удлинения в пределах упругой деформации. Он равен:

Е = Рl 0 / l ср F 0 ,

где ∆Р – приращение нагрузки; l 0 – начальная расчетная длина образца; l ср – среднее приращение удлинения; F 0 начальная площадь поперечного сечения.

Предел текучести (условный ) – напряжение при котором остаточное удлинение достигает 0,2 % длины участка образца на его рабочей части, удлинение которого принимается в расчет при определении указанной характеристики.


Вычисляется по формуле:

σ 0,2 = Р 0,2 /F 0 .

Условный предел текучести определяют только при отсутствии на диаграмме растяжения площадки текучести.

Относительное удлинение (после разрыва ) – одна из характеристик пластичности материалов, равная отношению приращения расчетной длины образца после разрушения (l к ) к начальной расчетной длине (l 0 ) в процентах:

Относительное равномерное удлинение (δ р) – отношение приращения длины участков в рабочей части образца после разрыва к длине до испытания, выраженное в процентах.

Относительное сужение после разрыва (ψ ), как и относительное удлинение – характеристика пластичности материала. Определяется как отношение разности F 0 и минимальной (F к ) площади поперечного сечения образца после разрушения к начальной площади поперечного сечения (F 0 ), выраженное в процентах:

Упругость свойство металлов восстанавливать свою прежнюю форму после снятия внешних сил, вызывающих деформацию. Упру­гость – свойство, обратное пластичности.

Очень часто для определения прочности пользуются простым, не разрушающим изделие (образец), упрощенным методом – измерением твердости.

Под твердостью материала понимается сопротивление проникновению в него постороннего тела, т.е., по сути дела, твердость тоже характеризует сопротивление деформации. Существует много методов определения твердости. Наиболее распространенным является метод Бринелля (рис. 3.3, а), когда в испытуемое тело под действием силы Р внедряется шарик диаметром D . Число твердости по Бринеллю (НВ) есть нагрузка (Р ), деленная на площадь сферической поверхности отпечатка (диаметром d ).

Рис. 3.3. Испытание на твердость:

а – по Бринеллю; б – по Роквеллу; в – по Виккерсу

При измерении твердости методом Виккерса (рис. 3.3, б) вдавливается алмазная пирамида. Измерив диагональ отпечатка (d ), судят о твердости (HV) материала.

При измерении твердости методом Роквелла (рис. 3.3, в) индентором служит алмазный конус (иногда маленький стальной шарик). Число твердости – это значение, обратное глубине вдавливания (h ). Имеются три шкалы: А, В, С (табл. 3.1).

Методы Бринелля и Роквелла по шкале B применяют для мягких материалов, а метод Роквелла по шкале C – для твердых, а метод Роквелла по шкале A и метод Виккерса – для тонких слоев (листов). Описанные методы измерения твердости характеризуют среднюю твердость сплава. Для того чтобы определить твердость отдельных структурных составляющих сплава, надо резко локализовать деформацию, вдавливать алмазную пирамиду на определенное место, найденное на шлифе при увеличении в 100 – 400 раз под очень небольшой нагрузкой (от 1 до 100 гс) с последующим измерением под микроскопом диагонали отпечатка. Полученная характеристика (Н ) называется микротвердостью , и характеризует твердость определенной структурной составляющей.

Таблица 3.1 Условия испытания при измерении твердости методом Роквелла

Условия испытания

Обозначение т

вердости

Р = 150 кгс

При испытании алмазным конусом и нагрузке Р = 60 кгс

При вдавливании стального шарика и нагрузке Р = 100 кгс

Значение НВ измеряют в кгс/мм 2 (в этом случае единицы часто не указываются) или в СИ – в МПа (1 кгс/мм 2 = 10 МПа).

Вязкость способность металлов оказывать сопротивление ударным нагрузкам. Вязкость – свойство, обратное хрупкости. Многие детали в процессе работы испытывают не только статиче­ские нагрузки, но подвергаются также ударным (динамическим) нагрузкам. Например, такие нагрузки испытывают колеса локомо­тивов и вагонов на стыках рельсов.

Основной вид динамических испытаний – ударное нагружение надрезанных образцов в условиях изгиба. Динамическое нагружение ударом осуществляется на маятниковых копрах (рис. 3.4), а также падающим грузом. При этом определяют работу, затраченную на деформацию и разрушение образца.

Обычно в этих испытаниях, определяют удельную работу, затраченную на деформацию и разрушение образца. Ее рассчитывают по формуле:

КС = K / S 0 ,

где КС – удельная работа; К – полная работа деформации и разрушения образца, Дж; S 0 – поперечное сечение образца в месте надреза, м 2 или см 2 .

Рис. 3.4. Испытания на ударную вязкость с помощью маятникового копра

Ширина образцов всех типов измеряется до испытаний. Высоту образцов с U- и V-образным надрезом измеряют до испытаний, а с Т-образным надрезом уже после испытаний. Соответственно удельная работа деформации разрушения обозначается KCU, KCV и КСТ.

Хрупкость металлов в условиях низких температур называют хладоломкостью . Значение ударной вязкости при этом существенно ниже, чем при комнатной температуре.

Ещё одной характеристикой механических свойств материалов является усталостная прочность . Некоторые детали (валы, шатуны, рес­соры, пружины, рельсы и т.п.) в процессе эксплуатации испытывают нагрузки, изменяющиеся по величине или одновременно по величи­не и направлению (знаку). Под действием таких знакопеременных (вибрационных) нагрузок металл как бы устает, прочность его понижается и деталь разрушается. Это явление называют усталостью металла, а образовавшиеся изломы – усталостными. Для таких деталей необходимо знать предел выносливости , т.е. величину наибольшего напряжения, которое металл может выдер­жать без разрушения при заданном числе перемен нагрузки (циклов) (N ).

Износостойкость – сопротивление металлов изнашиванию вслед­ствие процессов трения. Это важная характеристика, например, для контактных материалов и, в частности, для контактного провода и токосъемных элементов токоприемника электрифицированного транс­порта. Износ заключается в отрыве с трущейся поверхности отдель­ных ее частиц и определяется по изменению геометрических размеров или массы детали.

Усталостная прочность и износостойкость дают наиболее полное представление о долговечности деталей в конструкциях, а вязкость характеризует надежность этих деталей.

При испытании на растяжение, в основном проводимом согласно нормам, гладкий стержень с зажатыми концами (рис. 3.1.1) подвергается приближенно одноосной нагрузке в соответствующей машине для испытания на растяжение (рис. 3.1.2). Под действием возрастающей силы получается диаграмма нагрузка - абсолютное удлинение или напряжение - относительное удлинение, которая характеризует прежде всего упругую область с помощью удлинения, линейно возрастающего с нагрузкой (прямую Гука) (рис. 3.1.3, а-г).

С превышением предела текучести наступает затем макроскопически пластическое удлинение, которое, наконец, в зависимости от состояния материала при появлении более или менее выраженной шейки увеличивается до разрыва. Важнейшими характеристиками, взятыми из испытаний на растяжение и имеющимися в диаграмме напряжение - удлинение, являются следующие:

В зависимости от свойств материала следует различать разные характерные формы проявления диаграмм напряжение - деформация. Хрупкий материал обнаруживает очень небольшую зону пластической деформации или в крайнем случае вообще ее не обнаруживает (см. рис. 3.1.3, i). Различные сплавы, например сплавы на медной основе с добавлением цинка или олова или сплавы на основе алюминия, демонстрируют четко выраженную зону предела текучести, т.е. происходит деформация без увеличения напряжения (см. рис. 3.1.3, в).
У нелегированной стали вследствие наличия растворенного углерода и азота в состоянии неполного отжига наблюдается верхний или нижний предел текучести, причем создается более или менее четко выраженная зона неоднородной деформации при переходе предела текучести (см. рис. 3.1.3, б). Материалы с такой формой предела текучести обнаруживают после деформации на поверхности линии текучести или полосы Людерса.
Если при пределе текучести не создается нестабильности, как это бывает у большинства металлов, то он может характеризоваться величиной остаточной деформации, т.е. отклонением от прямой Гука. Для этого вводится, например, Rр0,2-предел, т.е. такое напряжение, при котором проявляется пластическая деформация 0,2 % (см. рис. 3.1.3, а). После достижения максимальной нагрузки на диаграмме напряжение - деформация наблюдается спад напряжения. Это можно объяснить образованием шейки у образца, испытываемого на растяжение (рис. 3.1.4) и обусловленным этим уменьшением поперечного сечения.

Напряжение σ = F/S0, отнесенное к исходному поперечному сечению, вследствие образования шейки становится слишком низким по сравнению с истинным напряжением, благодаря чему в итоге получится истинная кривая упрочнения с подъемом напряжения до разрыва. Торможение пластической деформации с помощью концентрации напряжения в надрезе и таким образом создание повышенных пиков напряжения принимают во внимание при испытаниях на растяжение надрезанных образцов.

У вязких материалов предел текучести и поперечное сужение подавляются концентрацией напряжений в надрезе. Благодаря концентрации напряжений в надрезе возникает диаграмма напряжение - деформация, которая соответствует испытанию гладкого образца из хрупкого материала. Отсутствие поперечного сужения ведет у надрезанного образца из вязкого материала к кажущемуся повышению предела прочности при растяжении. Повышение напряжения в основании надреза обозначается коэффициентом αk. Этот коэффициент концентрации напряжений обозначает повышение напряжения в надрезе по сравнению с напряжением у гладкого образца (рис. 3.1.5) и определяется по формуле

У хрупкого материала это повышение напряжения ведет к уменьшению прочности на растяжение:

17.10.2019

Изготавливают пробковые панели из натурального материала. Для этого используется кора дуба (пробковый дуб произрастает на севере Африки и в некоторых районах южной...

17.10.2019

Хозяйственная деятельность человека зачастую усиливает процесс естественной эрозии почвы. Постепенно меняется рельеф, создаются каналы, меняют направление реки, кюветы...

17.10.2019

Функции этикеток могут быть разными. После наклейки на товар они становятся источником данных о производителе и продукции, используются как средство продвижения и...

17.10.2019

Специальные инструменты используются в современном строительстве для штукатурных работ. Для их применения особых умений не требуется, так как все они являются достаточно...

17.10.2019

В далеком 1984 году увидел свет первый 3D принтер. Чак Халл сделал революционное изобретение. В сфере создания таких принтеров основанная им компания и сегодня занимает...

17.10.2019

Все большее количество приспособлений и материалов появляется на строительном рынке. Трубы ППУ в последнее время стали занимать на рынке теплоизоляционных изделий одно...

17.10.2019

У человека много времени освобождается при любой автоматизации. Легче становится его жизнь. Шуруповерты были изобретены относительно недавно, а сейчас уже в продаже их...

17.10.2019

Свои истоки онлайн-казино «Вулкан Старс» берет еще в те годы, когда большинство людей даже не представляли себе виртуальные развлечения....

16.10.2019

В качестве дизайнерского решения кованые перила стали весьма популярны. С их помощью можно оформить как лестницы, так и крыльцо. Окружить себя изяществом и красотой люди...